Weitere Blogs von Eduard Heindl

Innovationsblog neue Ideen | Some Science my research | Energiespeicher Bedeutung und Zukunft | Energy Age the big picture (engl.)

Dienstag, 17. April 2012

Wirkungsgrad von Speichern


Mit zunehmendem Ausbau von Wind und Sonne wird es Überschüsse bei der Stromversorgung geben, die zu sehr niedrigen Strompreisen führen. Häufig ist man der Meinung, bei sehr billigem Strom würde der Wirkungsgrad der Speicher nur eine untergeordnete Rolle spielen. Daher soll hier der Zusammenhang zwischen dem Wirkungsgrad eines Speichers und der Wirtschaftlichkeit eines Speichers betrachtet werden.
Strompreisschwankungen an der EEX, mit einem Speicher kann man damit Geld verdienen.

Typische Wirkungsgrade von Stromspeichern

Der perfekte Stromspeicher hat 100% Wirkungsgrad, das bedeutet, eine kWh Strom, die eingespeichert wird, kann man genauso wieder entnehmen. Diesen Wirkungsgrad hat etwa ein Kondensator. Allerdings sind Kondensatoren derart teuer, dass man nur sehr kleine Energiemengen speichern kann und eine weitere Betrachtung dieser Technik keine Bedeutung hat.

Pumpspeicher

Nicht ganz so gut, aber mit dem besten Wirkungsgrad für große Strommengen, sind Pumpspeicherkraftwerke. Damit wird mit einer Pumpe Wasser in einem höher gelegenen See gepumpt und bei Bedarf über eine Turbine wieder Strom erzeugt. Die besten Pumpen erreichen heute einen Wirkungsgrad von 92%, für Turbinen gilt dasselbe. Somit liegt der mögliche Gesamtwirkungsgrad bei 85%. In der Praxis wird dieser Wert selten erreicht, da hohe Wirkungsgrade auch immer mit teuren Maschinen verbunden sind. So findet man in der Praxis meist einen Wirkungsgrad von 80% bei neuen Pumpspeicherkraftwerken und bei älteren manchmal weniger als 70%. (mehr zu Pumpspeicherkraftwerke)

Druckluftspeicher

Komprimiert man Luft und pumpt diese in eine Kaverne, so kann man damit auch Energie speichern. Diese sogenannten (nicht adiabatische) Druckluftspeicher-Speicher brauchen wenig Platz, sind technisch nicht sonderlich anspruchsvoll, erreichen aber nur einen Wirkungsgrad von 40%. Dies liegt an einem lästigen physikalischen Effekt, komprimiert man ein Gas, erwärmt es sich. In der Kaverne kühlt das Gas aber aus und verliert damit wertvolle mechanische Energie, weil damit auch der Druck abfällt.

Methan

Eine Umwandlung von Strom in Wasserstoff und Sauerstoff kann mit einem Wirkungsgrad von 80% erfolgen. Verwandelt man diesen Wasserstoff in Methan, lässt sich dieses Gas in fast beliebiger Menge im Erdgasnetz speichern. Das ist für einen Langzeitspeicher optimal, allerdings ist jetzt nur noch 60% der ursprünglichen elektrischen Energie vorhanden. Leider liegt der Wirkungsgrad bei der Umwandlung von Methan mit einer Gasturbine in Strom bei 50%. Damit liegt der Gesamtwirkungsgrad bei 30% (0,6 × 0,5).
(Mehr zu Erdgasspeicher Power to Gas)

Wirtschaftliche Nutzung eines Speichers.

In der folgenden Rechnung wurden die tatsächlichen Strompreise der EEX-Strombörse in der Zeit vom 19. bis 26. März 2012 verwendet, um optimal mit verschieden guten Speichern Strom günstig einzukaufen und wieder möglichst teuer zu verkaufen. Man sieht deutlich, dass kurz nach Sonnenuntergang der Strom am teuersten ist, weiterhin an manchen Tagen mit viel Wind der Strompreis unter 20 Euro/MWh (2 ct/kWh) liegt.
Einnahmen mit einem Speicher, je nach Wirkungsgrad.

Ist der Wirkungsgrad hoch, etwa 80%, dann kann man bereits geringe Preisschwankungen ausnutzen, da nur ein geringer Verlust im Speicher auftritt. In dem Beispielzeitraum hätte man, auf das Jahr hochgerechnet, 740 Euro mit einer MWh Speicherkapazität verdient. Oder in der bequemen Einheit kWh wären es 0,74€/kWh × a Einnahmen gewesen. Ein normales Pumpspeicherkraftwerk, das 100€/kWh kostet, kann damit nie in die Gewinnzone vordringen. Der Lageenergiespeicher hätte bereits im zweiten Jahr einen Überschuss erwirtschaftet.

Mit einem geringeren Wirkungsgrad, wie dem Druckluftspeicher (40%) wären die Einnahmen noch geringer, 0,36€/kWh*a. Selbst bei einer völlig kostenlosen Kaverne ist hier ein Gewinn aufgrund der Turbinenkosten schwer darstellbar.

Mit der Technik „Power to Gas“, bei der Methan erzeugt wird und daraus wieder Strom erzeugt wird, liegt der Wirkungsgrad bei 30% und die Einnahmen betragen nur 0,20€/kWh × a, damit ist die Finanzierung des Elektrolyseurs, der Methan Chemie und der Gasturbine schwer vorstellbar, selbst wenn der Speicher, das Erdgasnetz, völlig kostenlos genutzt werden können.

Strompreise in der Zukunft

In Zukunft werden die Strompreise wesentlich stärker schwanken, damit ist eine Verdopplung, oder eine noch wesentlich stärkere Erhöhung der Einnahmen leicht vorstellbar. Allerdings werden dabei die einzelnen Speicher weiterhin nur proportional zum Wirkungsgrad hinzugewinnen.

Jedem den es gelingt, Speicher im Preisbereich von 10€/kWh herzustellen, hat damit ausgezeichnete Einnahmemöglichkeiten. Und genau das könnte die große Chance des Lageenergiespeichers werden.
Anmerkung: Die Rechnung nutzt nur die Daten von acht Tagen und ist daher nicht repräsentativ für das ganze Jahr. Aber sie gibt einen ersten Eindruck, wie sich die Einnahmen eines Speichers darstellen. 

Montag, 2. April 2012

Benzin ein teurer Energiespeicher?

Jedes Jahr an Ostern brandet die Diskussion auf, warum ist das Benzin so teuer?
Als erstes sind da natürlich die Mineralölkonzerne schuld, halt, so einfach ist das nicht!
Ölpreis in Dollar pro Barrel ab Rotterdam,
Quelle: http://www.finanzen.net/rohstoffe/oelpreis 
Ich will mal versuchen, sachlich einige Aspekte des Beninpreises darzustellen.

Der Rohölpreis

Der Rohölpreis hat direkten Einfluss auf den Benzinpreis, eine ganz stark vereinfachte Rechnung besagt, aus einem Barrel kann man 150 Liter Benzin gewinnen. Kostet also ein Barrel 125$, was um Ostern 2012 der Fall ist, dann kostet ein Liter 0,83$ oder 0,64€/Liter, bei einem Dollarkurs von 1,30€/$.
Das war vor einem Jahr noch anders, da kostete ein Barrel 110$ und der Euro war noch 1,45€/$ wert. Damit kostete das Benzin im Einkauf 0,51€/Liter, damit ist der Einkaufspreis um über 25% gestiegen.
Warum das so ist, liegt an zwei wichtigen Faktoren, Öl wird immer knapper, zudem benötigt Japan sehr viel Öl, da es seine gesamten Kernkraftwerke abgeschaltet hat. Das andere Problem ist der Euro, aufgrund einer starken Ausweitung der Geldmenge, bekannt unter "Eurorettung" hat der Euro weltweit eine schwächere Kaufkraft.
Wir es eine Änderung beim Rohölpreis geben? Vermutlich wird der Preis nicht mehr längerfristig sinken, da es noch keinen Ersatz für diesen optimalen Energiespeicher gibt. Jeder Liter enthält 10kWh, würde man das in einem Bleiakku abspeichern, benötigt man für einen Liter bereits zehn Akkumulatoren. Es gibt aber eine gewisse Preisgrenze nach oben, da es ab einem Ölpreis von 150$/Barrel ökonomisch ist, aus Kohle Öl herzustellen.

Die Steuern

In Deutschland wird Treibstoff besteuert, merkwürdigerweise nicht nach Energiegehalt, sondern nach Treibstoffsorte. So wird Benzin höher (65ct/l) besteuert, als Diesel (47ct/l) und Erdgas (18ct/l) fast überhaupt nicht. Damit versuchen die Politiker den LKW Verkehr zu stärken, viele LKW finden Politiker gut, Autofahrer haben da manchmal eine andere Meinung. 
Der Grund für diese Steuer ist im Prinzip nachvollziehbar, damit sollen die Straßen finanziert werden. Zusätzlich hat man aber auch eine sogenannte Ökosteuer eingeführt, aus der die Renten finanziert werden sollen. 
Interessanterweise kommt auf diese Steuer und den Benzinpreis noch die Mehrwertsteuer hinzu, diese macht 19% aus, was bei einem Tankstellenpreis von 1,70€/Liter immerhin 27ct/l sind. Die Gesamtsteuer pro Liter beträgt damit 0,92€/Liter.

Die Mineralölkonzerne

Die verbleibenden 0,14€/Liter (1,70€-0,64€-0,92€) teilen sich nun die Mineralölindustrie, der Tankstellenbetreiber und der arme Mitarbeiter, der in der Nacht vom Ostersonntag zum Ostermontag in der Tankstelle stehen muss. Ehrlich gesagt sehe ich da nicht all zuviel Luft für Preissenkungen durch die Tankstellen.

Aber aus irgendeinem Grund wird in den Medien jedesmal auf die Mineralölkonzerne losgegangen. Ich will nicht sagen, dass ich jede Aktion der Konzerne so toll finde, man denke nur an die Ölkatastrophen, aber für den hohen Benzinpreis können sie nichts.

Schuldig am hohem Benzinpreis sind:

  1. Der Staat  (54%)  mit seinen Steuern, aber das sind wir, wir bekommen das Geld wieder zurück, in Form von Rente, Straßen und vielleicht sogar Bildung.
  2. Die Ölknappheit (23%), seit 1972 wird weniger Öl gefunden als verbraucht. Solange wir keine anderen Energiespeicher haben, wird fast jeder Preis gezahlt werden.
  3. Die Europolitiker, durch den Kaufkraftverlust des Euros wird Öl teurer.
  4. An letzter Stelle die, die sich darum kümmern, dass überall immer Benzin verfügbar ist. 
Wie wertvoll ist Energie?
Vielleicht auch interessant: Wie viel Geld mit Öl verdient wird!

Samstag, 31. März 2012

Investitionsvolumen neue Energiespeicher

Sobald die Energieproduktion aus Wind und Sonne den Bedarf übersteigt, ist es sinnvoll, Strom in großem Umfang zu speichern. Mittags, am 28. März 2012 wurde erstmal in Deutschland über die Hälfte des Stroms aus Windkraftwerken und Solaranlagen erzeugt. Innerhalb weniger Jahre wird es völlig normal sein, dass zeitweise deutlich mehr Strom produziert wird als von allen Verbrauchern benötigt wird.
Vermutete Umsätze im Speichermarkt bis 2021 laut Pike Research
Speichervolumen
Das zu erwartende Speichervolumen ist dabei abhängig von den Stromleitungen, eine gute Schätzung ist, dass innerhalb Deutschlands eine Verbesserung des Stromnetzes erfolgt, aber kein perfektes Stromnetz in Europa aufgebaut werden wird. Damit entsteht ein Speicherbedarf von sieben Tagesladungen Strom, das sind 11.000 GWh. Es ist dabei zu beachten, dass die Speicher wohl nie innerhalb von sieben Tagen vollständig entladen werden, jedoch in ungünstigen Zeiten, wenn wochenlang wenig Wind weht und wenig Sonne scheint, die Speicher diese Energiemenge zusätzlich zu den schwachen anderen Stromquellen liefern.

Preise für große Speicher 
Die günstigsten Speicher sind bis heute Pumpspeicherkraftwerke, dort kostet eine Kilowattstunde Speicherkapazität etwa 100 €. Würde man in Zukunft nur auf diese Technik setzen, kosten die Speicher 1100 Milliarden Euro, das ist vergleichbar mit dem sogenannten Rettungsschirm für den Euro, der angeblich 800 Milliarden Volumen hat. Dies ist offensichtlich extrem viel Geld, das nicht in einem Jahr ausgegeben werden wird.
Eine Analyse von Pike Research geht davon aus, dass bereits im Jahr 2020 weltweit mehr als 20 Milliarden $ für große Speicher pro Jahr ausgegeben werden. Nach fünfzig Jahren wären das aber erst die notwendigen Investitionen, die für Deutschland alleine nötig sind (bei konstanten Ausgaben gerechnet).

Mögliche Alternativen
Die Studie von Pike Research verteilt die Ausgaben auf verschiedene Speichertechnologien. Dabei ist anzumerken, dass "Advanced" Lithium oder Flow Batterien noch nicht existieren. Natrium Schwefel Batterien sind nach einem schweren Zwischenfall in Japan etwas in Verruf geraten und mit weit über 100€/kWh auch nicht billiger als Pumpspeicher. CAES bedeutet Compressed Air Energy Storage, auf deutsch Druckluftspeicher, diese sind zwar mit 100€/kWh günstig aber aus physikalischen Gründen liefern sie nur 40% der eingespeicherten Energie zurück.
Bleibt noch der Lageenergiespeicher, der hier nicht erwähnt wird, aber das Potenzial hat, um den Faktor 50 günstiger als ein Pumpspeicherkraftwerk zu sein.

Weltweiter Bedarf
Analysiert man nicht nur den deutschen Markt, sondern den Weltmarkt, dann ergeben sich extrem große Zahlen. Längerfristig wird weltweit ein Wechsel zu Wind- und Solarenergie stattfinden. Nicht, weil es ein CO2 Problem gibt, sondern weil es einfach billiger ist, ein Wind oder Solarkraftwerk aufzubauen. Eine Situation die bereits jetzt an vielen Orten der Welt eingetroffen ist. Damit wird es nötig, eine Speicherkapazität von der gleichen Größenordnung wie in Deutschland aufzubauen, mit den weltweiten Stromverbrauchsdaten aus 2008 ergibt sich damit ein Speicherbedarf von 360 TWh, was bei der Nutzung der preiswertesten verfügbaren Technik, dem Pumpspeicherkraftwerk, auf 36.000 Milliarden Euro führt. Damit ist klar, dass der Markt für die Speicherung von Strom einer der bedeutendsten Märkte der nächsten 30 Jahre wird, der Zeitraum, in dem die globale Energieversorgung auf erneuerbare Energien umgestellt wird. Könnte man den Lageenergiespeicher zum erwarteten Preis von 2€/kWh realisieren, wäre das eine weltweite Einsparung von etwa 35 000 Milliarden Euro!

Samstag, 17. März 2012

Paradoxe Marktsignale

Die Energiewende wird in den nächsten Jahren die bisherigen Energielieferanten, Kohle- und Kernenergie, durch Windkraft und Solarenergie ablösen. Damit werden aber nicht nur die Energiequelle einfach ausgetauscht, sondern auch ein fundamentaler Wandel von gespeichert Energie, die in Strom umgewandelt wird, hin zu zeitlich fluktuierender Energie, die gespeichert werden muss, eingeleitet.
Verlauf der Stromproduktion, Grau: konventionelle Kraftwerke, Grün: Windkraft, Gelb Solarenergie. (Quelle: eex)

Der Tagesverlauf
Im Lauf eines Tages ändert sich der Energieverbrauch merklich, siehe Bild. In der Nacht, gegen drei Uhr ist er am niedrigsten, im Lauf des Vormittags steigt er an um kurz nach 12:00 sein Maximum zu erreichen, ab 20:00 geht der Verbrauch dann wieder deutlich zurück. Dabei gibt es gewisse Unterschiede in den Wochentagen, diese sollen jetzt aber nicht betrachtet werden. Um diesen Tagesverlauf optimal mit Kraftwerken abzubilden, gibt es Grundlastkraftwerke, die immer Strom erzeugen, wie Kernkraftwerke, und Spitzenlastkraftwerke die genau während der Verbrauchsspitzen laufen. Es ist ökonomisch natürlich vorteilhaft, Kraftwerke möglichst viele Stunden in Betrieb zu halten, da dies bei den Spitzenlastkraftwerken nicht geht, ist der Preis dieses Stroms auf dem Markt teurer. Der Verbraucher merkt davon jedoch nichts, da wir eine Art "flatrate" für die kWh haben.
Die Marktsignale
Auf dem Strommarkt ist der Strompreis von der Nachfrage abhängig, hohe Nachfrage hoher Preis. Daher hat man schon vor vielen Jahren begonnen, mit Pumpspeicherkraftwerken diesen Preisunterschied auszunutzen. In der Nacht, wenn der Strom billig war, hat man Wasser hochgepumpt, Mittags, wenn alle die Herdplatte eingeschalten haben, hat man diese Energie zu einem höheren Preis verkauft. Mit der Preisdifferenz hat man den Speicher finanziert.
Heute haben wir jedoch viele Solarzellen auf den Dächern und genau am Mittag, wenn die Menschen die elektrischen Maschinen nutzen, gibt es Strom aus den Solarzellen, der Strompreis steigt nicht an, da die Photovoltaik genau diesen Bedarf deckt. Der Pumpspeicherkraftwerksbetreiber schaut in die "Röhre". Er kann den Strom nicht sinnvoll verkaufen. Sieht man in den Geschäftsbericht der EnBW von 2011, dann wird dort genau über die geringen Einnahmen der Schluchseekraftwerke gejammert.
Irreführendes Signal
Dieses Marktsignal ist jedoch sehr irreführend, da in Zukunft die Situation völlig anders aussehen wird. Wächst  die Photovoltaik weiter, so wird am Tag nicht nur die Verbrauchsspitze abgedeckt, sondern so viel Strom erzeugt, dass andere Kraftwerke abgeschalten werden müssen, da Solarstrom per Gesetzt Vorfahrt hat. Damit verlagert sich der ungedeckte Strombedarf in die Nacht und plötzlich geht die Schere zwischen Angebot und Nachfrage wieder auf.
Für den Investor in Speicherkraftwerke ist das natürliche eine riskante Angelegenheit, sollte aus irgendeinen Grund die Energiewende ins Stocken geraten und kein weiterer Zubau von Solarkraftwerken erfolgen, könnte die Investition eine Fehlinvestition werden.
Große Energieunternehmen haben eine hohe Verantwortung und sind bei solchen Geschäftsmodellen mehr als vorsichtig. Daher sind klare politische Vorgaben für den Ausbau der Erneuerbaren Energien notwendig, da sonst die notwendigen Investitionen in  Speicher nicht getätigt werden.
Mutige Investoren gesucht  
Da aber absehbar ist, dass die Politik mit dem Wechsel auf Erneuerbare Energien ebenfalls überfordert ist, sind mutige Investoren gesucht, die das Problem verstehen und sehen, dass mit Speichern in naher Zukunft viel Geld zu verdienen ist. Genau weil die bisherigen Akteure zu zögerlich sind.
Ähnliches kann man übrigens in vielen Märkten beobachten. Oder kennen Sie ein Zeitungsportal im Internet, das alle Newsmeldungen durchsucht? Nein, das macht die marktfremde Firma Google.

Donnerstag, 1. März 2012

Energieeinheiten uneinheitlich

Wer sich mit der Energieversorgung beschäftigt, der stößt bald auf viele verschiedene Energie-Einheiten, die immer das Gleiche beschreiben. Obwohl eigentlich im Warenverkehr nur das SI-System zulässig ist, hält das die Berichterstattung nicht davon ab, völlig obscure Einheiten zu verwenden.
Beliebte Energieeinheit: das Barrel (Bildquelle: Wikipedia)
Aber zuerst mal die physikalisch übliche Energie-Einheit, das ist das Joule. Mancher der seine Kalorien zählt, hat davon schon gehört. Eine Kalorie ist eigentlich 4,12 Joule, da aber die Kalorienzähler immer Kilokalorien zählen, sind eben 4,12 kJ gleich einer Kilokalorie. Ausserhalb der Physik und der Ernährung ist es aber eine eher seltene Einheit. Oder haben Sie schon mal an der Tankstelle gefragt, wie viel Joule ein Liter Benzin hat? Es sind 30.000 kJ.

Die kWh ist sinnvoll
Eine Kilowattstunde, das ist die Energie, die ein Haarföhn mit 1000 Watt (1 kW) in einer Stunde verbraucht. Oder jedes andere elektrische Gerät, das eine Stunde lange 1000 W Leistung aufnimmt. Etwa ein kräftiger Halogenstrahler oder eine starke Bohrmaschine. Dafür hat man ein gewisses Gefühl, auch deshalb, weil dann auf der Stromrechnung pro kWh abgerechnet wird. Mit den aktuellen Preisen zahlt man etwa 0,23 Euro für eine kWh, was vor allem an den Steuern liegt.
Ein Mensch als Radfahrer kann etwa 200 Watt leisten, das bedeutet, nach einer Radtour von fünf Stunden haben wir eine (mechanische) Leistung von 1 kWh abgegeben und sind vielleicht 100 km weit gekommen.
Danach haben wir kräftig Hunger und müssen mindestens drei kWh essen. Das gelingt mit 500g Mohnschnecken oder was man eben gerne zu sich nimmt. Hat man sich an die kWh gewöhnt, dann kann man die anderen Einheiten leichter verstehen.

Weitere Einheiten
Sehr beliebt bei jeder Energiediskussion ist das Barrel, das ist ein Fass mit 159 Liter Öl. Obwohl es da etwas unterschiedliche Fässer gibt, in denn früher Öl transportiert wurde, hat man sich auf dieses Volumen geeinigt. Öl ist jetzt nicht gleich Öl, Rohöl kommt in sehr unterschiedlichen Zusammensetzungen aus den Quellen, aber als groben Anhaltspunkt halten wir fest, dass in dem Fass 1.600 kWh Energie gespeichert sind. Will man aus dieser Energie im Öl Strom erzeugen, dann gibt es ein Problem, höchstens die Hälfte der Energie wird zu Strom, der Rest ist Abwärme. Kostet so ein Fass 125$ oder etwa 100€, dann kann man berechnen, wie teuer der Strom daraus wäre, es sind 0,12€/kWh.
Obwohl das nach einen niedrigen Preis aussieht, ist das für den Strommarkt viel, aktuell kostet eine kWh auf dem Strommarkt 0,07€/kWh und das liegt daran, dass man immer noch hofft, dass der Ölpreis wieder deutlich absinkt. Nebenbei sei natürlich bemerkt, dass die Stromhändler immer gleich 1.000 kWh verkaufen und das ist dann eine Megawattstunde (MWh). Und die kostet eben 70€ auf dem Strommarkt, mal mehr mal weniger, wie man leicht bei der Strombörse unter eex nachlesen kann.

Und die Solarzellen?
Solarzellen die Strom erzeugen, werden nach ihrer Leistung gemessen. Die Leistung hängt von der Sonneneinstrahlung ab und beträgt bei voller Sonneneinstrahlung auf 6m² Photovoltaik etwa 1.000 Watt was 1 kW ist.
Hält man diese Zellen ein Jahr lang in die Sonne, so liefern diese Zellen bei deutschen Wetterverhältnissen etwa 1.000 kWh oder eben eine MWh Strom ab, da die Sonne 1.000 Stunden scheint. Würde man diesen Strom an der Börse verkaufen, erhält man dafür, wie oben beschrieben, 70€, wenn es keine EEG Sonderzulage gäbe. Nach 20 Jahren sind das immerhin 1400€, womit man unter sehr günstigen Umständen die Solarzellen tatsächlich erwerben kann. Völlig anders sieht es im Süden aus, wo die gleichen Solarzellen 2.500kWh Strom abliefern und nach 20 Jahren immerhin 3.500€ verdienen.  

Alte Einheiten
Früher, als noch Kohle verheizt wurde, war die Grundeinheit für Energie eine Tonne Steinkohle (tSKE). Aus dieser Tonne Kohle kann man durch Verbrennen 8.140 kWh Wärme gewinnen und mit einem Kohlekraftwerk erzeugt man damit 3200 kWh Strom. Diesen kann man für 227€ verkaufen. Da aktuell auf dem Weltmarkt eine Tonne Steinkohle weniger als 100€ kostet, kann man mit Kohlekraftwerken natürlich viel Geld verdienen.
Damit dieser Beitrag nicht zu lange wird, beende ich jetzt die Liste der Energieeinheiten und hoffe die Betrachtung war nützlich.

PS. In diesem Blog sind einige Vereinfachungen vorgenommen, im Detail sind Energiepreise sehr komplex, aber ich habe immer die Einheiten auf Geldbeträge umgerechnet, da dies sehr hilfreich ist.

Hinweis:
Einen guten Rechner für Energieeinheiten findet man bei Volker Quaschning

Montag, 13. Februar 2012

Das Märchen vom Smart Grid

Wenn wir heute kochen, waschen, bügeln, computern, telefonieren, Licht anschalten, dann achten wir nicht auf den aktuellen Strompreis. Es gibt aber die Überlegung, dass man die Verbraucher davon Überzeugt, bestimmte elektrische Geräte nur dann einzuschalten, wenn gerade genügend Strom auf dem Markt ist. Etwa, wenn gerade die Sonne scheint oder der Wind kräftig weht.
Da es nun reichlich unpraktisch ist, den Strompreis ständig im Blick zu haben, hat man etwas neues erfunden das "Smart Grid"
Smart Grid 
Mit einem Computer am Stromzähler wird der aktuelle Strompreis ermittelt und im Haus werden alle Geräte, die smart sind, ein oder ausgeschaltet, je nach Situation. Es ist natürlich klar, dass man schlecht einfach das Licht ausschalten kann, wenn jemand gerade die Treppe herunter läuft. Daher werden nur einige bestimmte Geräte smart. Das ist zunächst mal der Kühlschrank, der hatte ja schon bisher ein Eigenleben. Immer wenn es gerade still ist, schaltet er ein. In Zukunft eben, wenn gerade Strom da ist.
Ein weiteres Gerät ist die Waschmaschine und die Spülmaschine. Die laufen erst los, wenn der Strom günstig ist, etwa tief in der Nacht, wenn der Wind weht und niemand arbeitet. Allerdings ist unklar, ob in einer Mietwohnung alle Nachbarn das so gut finden.
Einige weitere Geräte wie die aufzustellende Wärmepumpe oder das e-Auto könnten zukünftig auch aktive Teilnehmer am Strommarkt werden.
Das Märchen
Es war einmal vor langer Zeit, da haben Kühlschränke viel Energie verbraucht. Da wäre es sicher schlau gewesen, diese entsprechend optimiert zu steuern. Weiterhin lohnt es, einen Blick auf die Stromrechnung zu werfen. Hat ein Haushalt 1000 Euro im Jahr für den Strom bezahlt, dann waren davon Steuern, Abgaben, Grundgebühr und so weiter, etwa 700 Euro. Verbleiben 300 Euro, die man optimieren könnte. laut einer optimistischen Studie [1] kann man mit einem Smart Grid etwa 18 Euro im Jahr einsparen. Das ist schön, allerdings hat diese Einsparung, wie viele ähnliche Einsparungen einen Haken, man muss erstmal investieren. Und pro Haushalt rechnet man mit etwa 1000 Euro, es muss ja ein entsprechender Computer in den Schaltkasten, eine Internetverbindung für die aktuellen Strompreise muss eingerichtet werden, die Geräte wie Waschmaschine benötigen einen entsprechenden Zusatz. Und das alles vom Elektromeister mit seinem noblen Stundenlohn eingerichtet kostet eben.
Kleinvieh macht auch Mist
Jetzt werden viele sagen, ja aber sehr viele Haushalte zusammen ergeben einen richtig großen Effekt! Bei 30 Millionen Haushalten liegt die Einsparung bei der Maximalleistung bei etwa 5 GW [2]. Achtung, hier wird nicht Strom eingespart, sondern nur zu einer anderen Zeit verbraucht. Fünf Gigawatt sind weniger als 10% des Strombedarfs. Hier stellt sich sofort die Frage, ob es nicht günstiger wäre, einige weitere Windkraftwerke aufzubauen, oder noch besser, Strom-Speicher einzusetzen.
Fazit
Soweit ich die Effekte von Smart Grid verstehe, sind sie eher gering, Das Smart Grid mit seinen vielen Systemkomponenten ist aber eine interessante Möglichkeit, den Endverbraucher Geräte zu verkaufen, die möglicherweise vom Staat subventioniert werden. man sollte also vorsichtig sein, wenn man hofft, das Smart Grid könnte ein grundlegendes Problem der erneuerbaren Energien lösen.

Weitere Blogbeiträge:




Quellen: 
[1] Droste-Franke, Bert, Balancing Renewable Electricity: Energy Storage, Demand Side Management, and Network Extension from an Interdisciplinary Perspective (Ethics of Science and Technology Assessment), Seite 107, Verlag: Springer 2012, ISBN: 3642251560
[2] Droste-Franke, Bert, aaO. Seite 105

Dienstag, 7. Februar 2012

Gibt es einen Klimawandel?


In der Diskussion um den Wechsel zu erneuerbaren Energien spielt die Frage des Klimawandels eine entscheidende Rolle. Doch gibt es überhaupt einen Klimawandel?

Hier will ich als Physiker einige Aspekte der Argumentation aufgreifen, das Urteil überlasse ich den Leser.

Was ist Klima?
Klima ist die langfristige Änderung etwa der Temperaturen, unter langfristig versteht man mindestens Jahrzehnte, oft auch Jahrhunderte. Die Tatsache, dass gerade Sibirische Kaltluft nach Deutschland eingeflossen ist hat also überhaupt nichts mit Klima sondern mit Wetter zu tun. In der Presse, die jeden Tag (und nicht jedes Jahrzehnt) eine neue Wettermeldung braucht, wird das gerne vermischt.
Historisch, in den letzten tausend Jahren, hat sich das Klima immer gewandelt, allerdings muss der Unterschied nicht all zu groß gewesen sein, in Deutschland gab es immer Frost aber es reichte zum Weinbau in einigen Gegenden. Aus den Ringen der alten Bäume kann man auch sehen, dass diese im Wesentlichen gleichmäßig gewachsen sind.
Temperatur im Kohlezeitalter
Das Kohlezeitalter    
Vor gut hundert Jahren haben wir begonnen, Kohle zu verbrennen, aber in wirklich großen Mengen geschieht das erst seit wenigen Jahrzehnten. Der Zeitraum von 1960-1990 gilt in der Klimatologie immer noch als ein „normaler“ Zeitraum, obwohl die CO2 Konzentration schon ein wenig gestiegen ist. In den letzten 20 Jahren scheint aber die Temperatur etwas anzusteigen, vielleicht um 0,5°C.
Das ist nicht besorgniserregend, da eine derartige Temperaturveränderung historisch vermutlich auch aufgetreten ist. Wenn auch sehr selten.

Jetzt wird es unübersichtlich, da viele damit argumentieren, dass dieser Anstieg völlig eindeutig durch das CO2 kommt. Wie kann man dies belegen? Ein eindeutiger Beleg wäre, die Situation zu wiederholen. Zurück nach 1950, keine Kohle und Öl verbrennen und nach 60 Jahren die Veränderung überprüfen. Genau das ist aber nicht möglich. Damit haben die Wissenschaftler zunächst ein Beweisproblem.

Beweisführung
Wie kann man den Beweis noch führen? Eine Ursachenanalyse ist hilfreich. Was kann die Temperatur erhöhen? Seit 1890 ist bekannt, dass CO2 ein Treibhausgas ist, oder besser gesagt, ein Gas, das mit der Infrarotstrahlung wechselwirkt. Das macht auch Wasserdampf und einige andere Gase wie Methan, jedoch nicht Stickstoff und Sauerstoff, die Hauptbestandeile der Luft.

Eine relativ einfache Rechnung zeigt, dass damit die Temperatur eines Planeten erhöht wird, und das geht so: Sonnenstrahlung fällt auf den Boden und wird in Wärme umgewandelt. Wo geht diese Wärme hin? Diese wird als Infrarotstrahlung in das Weltall abgestrahlt. Wäre das nicht so, hätten wir bald 6000°C auf der Erde! CO2 behindert diese Abstrahlung etwas, die Oberfläche des Planeten wird etwas wärmer. Bei der Venus, die sehr viel CO2 in der Atmosphäre hat, führt das zu einer Bodentemperatur, die Blei schmelzen lässt.

Führt man die Rechnung zu Ende, erhält man einen Temperaturanstieg, der gut mit der gemessenen Veränderung übereinstimmt. Für die Zukunft gibt es zwei Probleme, wie wird sich der CO2 Anstieg weiterentwickeln und gibt es Rückkopplungen.

Die billigste Energiequelle gewinnt 
Solange Kohle der billigste Brennstoff ist, um Strom zu erzeugen, wird Kohle verbrannt werden, da kaum ein Land bereit ist, günstige Energie nicht zu nutzen. Daher kann man vermuten, dass noch viel weiteres CO2 in die Atmosphäre kommt. (So billig kann Solarenergie werden!)

Das Rückkopplungsproblem
Wesentlich kritischer ist die Frage der Rückkopplung. Das Klima wird durch weitere Faktoren bestimmt, insbesondere Wasserdampf, der noch besser als CO2 die Infrarotstrahlung absorbiert. Wird es wärmer, verdampft mehr Wasser, wie jeder am Herd selbst feststellen kann. Damit kommt eine sogenannte Rückkopplung zustande, etwas wärmer, mehr Wasserdampf, noch wärmer usw. Dies wäre ein Teufelskreis, der uns in wenigen Jahren einen unbewohnbaren Planeten bescheren würde.

Wenn da nicht auch noch die Wolken wären. Wolken reflektieren das Sonnenlicht sehr gut, und daher ist es an einem bewölkten Tag auch kühler. Leider ist es sehr schwierig dies quantitativ zu untersuchen. Die Wissenschaftler versuchen daher das Klima in Wettermodellen zu analysieren. Aber Wetter ist schwierig zu analysieren und damit sind wir wieder am Anfang der Geschichte. Wer das Klima verstehen will muss auch das Wetter verstehen und das ist schwierig.

Interessanterweise führen aber praktisch alle Annahmen die man in die Modelle steckt immer zu einer deutlichen Erhöhung, oder genauer gesagt zu einem gewissen Rückkopplungseffekt, der höher ist, als der reine CO2 Effekt.

Ist ein warmes Klima ein Problem?
Ist warmes Klima ein Problem? Im Prinzip gab es auf der Erde schon sehr warme Zeiten, etwa als all die Kohle entstand, die wir jetzt verbrennen. Das Problem ist zum einem, dass der Wandel, wenn er sehr schnell kommt, und erdgeschichtlich sind tausend Jahre bereits sehr schnell, für die Natur bereitet das Schwierigkeiten. Aber man kann sagen, das ist deren Problem. Die aktuelle menschliche Zivilisation ist, nebenbei bemerkt, für den Artenreichtum vermutlich ein viel größeres Problem.
(Offensichtlich nimmt die Begrünung der Erde aktuell zu, Nature Climat Change Letter)
Für uns Menschen dürfte die Änderung des Meeresspiegels, der in erster Linie durch die Erwärmung und damit Ausdehnung des Wassers verursacht wird, das größte Problem sein. Sehr viele Städte sind an den Küsten und auf geringer Meereshöhe gebaut. Ein weiteres akutes Problem könnte in der Landwirtschaft entstehen, wenn sich Wüsten ausdehnen. Aber bereits hier sind genaue Prognosen sehr schwierig. Hier gilt es also Kosten abzuwägen.

Billige Solarzellen sind wichtiger als CO2 Zertifikate
Letztendlich ist man auf der sicheren Seite, wenn man nicht zu sehr in die Zusammensetzung der Atmosphäre eingreift. Daher sollte der CO2 Ausstoß verringert werden. Dies wird aber nur gelingen, wenn die erneuerbaren Energien preiswerter sind als die Verbrennung von Kohl und Öl. Vermutlich sehen wir gerade diese Wende. An vielen günstigen Standorten ist Wind günstiger als Kohlekraftwerke, im Süden wird das bald flächendeckend für Solarenergie gelten. (Untere Preisgrenze für Solarenergie)

Nur mit Energiespeicher wird das Klima so erhalten
Bleibt noch das Speicherproblem, wenn dieses gelöst ist, ist auch das Klimaproblem gelöst. Daher ist die Erforschung günstiger Energiespeicher von globaler Bedeutung!

Weitere Betrachtung: