Weitere Blogs von Eduard Heindl

Innovationsblog neue Ideen | Some Science my research | Energiespeicher Bedeutung und Zukunft | Energy Age the big picture (engl.)
Posts mit dem Label GWh werden angezeigt. Alle Posts anzeigen
Posts mit dem Label GWh werden angezeigt. Alle Posts anzeigen

Samstag, 1. März 2014

Tesla und die Batteriepreise

Tesla und die Batterie-Preise

Mit der Meldung von Tesla Motors, man will eine Gigafactory für Lithium-Ionen-Batterien (LiIon)bauen, verändert sich der Batteriemarkt grundlegend. Wie stellt sich der Markt für Lithium Batterien in Zukunft dar? Eine entscheidende Größe wird sein, wie viele Elektroautos LiIon-Batterien nutzen werden. Alle bisherigen LiIon-Batterien wurden im Wesentlichen in Laptops und anderen mobilen Endgeräten eingebaut. Der Bedarf an elektrischen Strom aus Batterien für einen Laptop oder iPad ist erheblich geringer als der für ein Elektroauto, daher muss bei einer weltweiten Einführung des Elektroautos eine massive Ausweitung der Batterieproduktion stattfinden.
Geplante Batteriefabrik der Firma Tesla Moors in den USA (Bild: Tesla [2])

Der Preis von Batterien

Heute kosten LiIon-Batterien für den Endverbraucher mindestens fünfhundert Euro pro Kilowattstunde Speicherkapazität. Dieser hohe Preis ist auch durch die kleinen Einheiten bestimmt, da selten Batterien mit einer Kilowattstunde verkauft werden, sondern nur mit dem Bruchteil davon. Eine typische Laptopbatterie hat etwa 0,05kWh. Will man ein erfolgreiches Elektroauto bauen, wie der Tesla S, der eine Reichweite von fünfhundert Kilometern hat, benötigt man 85 kWh Batteriekapazität. Tesla bietet den Austausch einer Batterie, mit 85 kWh Kapazität, für 12.000 Dollar an, das ist allerdings nicht der aktuelle Batteriepreis, da der Austausch nur bei Bedarf erfolgt [1]. Der tatsächliche Preis einer Ersatzbatterie auf dem freien Markt liegt bei 30.000$, mithin kostet eine Kilowattstunde nicht nur 100€, sondern eher 250€, immer noch ein günstiger Preis.

Anmerkung: Aktuelle Liste der Batterie-Preise [Quelle: Wirtschafts-Woche]

Solarbatterien

Die gewaltigen Preisunterschiede gegenüber stationieren Batterien für Solaranlagen, die heute angeboten werden, liegt im Wesentlichen an den kleinen Stückzahlen, in denen diese stationären Batterien verkauft werden und an dem Aufwand dieses Lokal zu installieren. Nach einer Untersuchung von Prof. Sauer [3] liegen aktuell (2013) die Preise von stationären LiIon-Systemen bei 2000-3800€/kWh, das ist etwa der Faktor zehn gegenüber LiIon-Tesla Batterien!

Batterien aus der Autofabrik

Die Zukunft soll mit Elektroautos fahren, daher werden enorme Mengen an Batterien benötigt. Tesla rechnet im Jahre 2020 mit 500.000 verkauften Fahrzeugen, die dafür notwendigen Batterien liegt jenseits der aktuellen jährlichen Produktionskapazität alle LiIon-Batterien weltweit, siehe Abbildung. Das bedeutet, entweder bauen andere Hersteller ihre Kapazität aus oder das Unternehmen Tesla baut die Batterien selbst. Da Batterien der Kern der Wertschöpfung in Elektroautos sind, keine Komponente ist annähernd so teuer, ist der Aufbau einer eigenen Fertigung nur logisch. Tesla geht dabei von einer Kostensenkung um etwa dreißig Prozent aus. Das bedeutet zukünftig kann eine Batterie für 170€/kWh auf Basis von Lithium-Ionen verkauft werden!
Batteriemarkt und die Dimension der Gigafactory von Tesla (Bild: Tesla [2])

Folgen niedriger Batterie-Preise im Süden

Die Folgen einer solchen massiven Preisreduktion gegenüber den aktuellen Werten im Handel führt zu einer starken Veränderung, die Möglichkeit lokal Fotovoltaik mit Batterieunterstützung zur autonomen Stromversorgung zu verwenden wird kostengünstiger als ein Netzanschluss. Besonders in sonnenreichen Regionen, wie in den Südstaaten der USA oder auch in den südlichen Regionen Europas, kann damit fast eine vollständige autonome Stromversorgung realisiert werden. Dies berührt das Geschäftsmodell von klassischen Stromerzeugern und Netzbetreiber erheblich. Es entfallen Millionen von Endkunden, die ihren Strom dann selbst produzieren und speichern. Der kleinen restliche Bedarf an Tagen, an denen weder die Sonne scheint, noch die Akkukapazität weiterhilft, kann mit einem preiswerten Notstromaggregat ersetzt werden. Es entstehen dann zwar an wenigen Tage im Jahr zusätzliche Kosten für den Treibstoff Diesel oder Benzin, diese sind aber erheblich unter den Gesamtkosten des externen Strombezugs.

Andere Situation im Norden

In Regionen wie Deutschland sieht die Situation leider nicht so günstig aus. Hier gibt es im Winterhalbjahr, insbesondere in den Monaten November bis Februar, derart wenig Sonne, dass selbst eine große, günstige Batterie nicht weiterhilft. Erst die Zusammenarbeit von Windenergie, die vor allem im Winter hohe Leistung liefert, und der Sonnenenergie im Sommer ermöglichen es für ein Land wie Deutschland ganzjährig im Wesentlichen auf erneuerbare Energien zu setzen. Dies erfordert allerdings immer noch eine hohe Speicherkapazität von einigen Tagen, die nicht von Batteriesystemen geleistet werden können, sondern etwa vom Lageenergiespeichern geliefert werden können.

Notwendige Produktionskapazität für Batterien

Wenn Tesla im Jahr 2020 jährlich 500.000 Batterien erzeugen will, die in entsprechende Elektrofahrzeuge genutzt werden, kann man die Frage stellen: Wie groß ist der globale Bedarf an Batterien, um alle Autos der Welt auf Elektroantrieb umzustellen? Aktuell gibt es etwa eine Milliarde Fahrzeuge auf der Welt:
Anzahl registrierter Kraftfahrzeuge weltweit in den Jahren 2005 bis 2013 (in 1.000)
Mehr Statistiken finden Sie bei Statista

Damit benötigt man eine Milliarde Batterien mit 100 kWh Kapazität. 100kWh nehme ich als Mittelwert, da Lastwagen deutlich mehr und Kleinwagen sicher weniger benötigen.
Das ergibt eine Gesamtkapazität von 100TWh an Batterien! Damit derart viele Batterien innerhalb von 10 Jahren hergestellt werden können, müssen jährlich 10TWh hergestellt werden. Das ist mit 200 Fabriken der Gigafactory-Klasse möglich. Damit ist es zumindest denkbar, dass derartige Fabriken innerhalb von 10 Jahren eine Batterie Kapazität Aufbau, um den gesamten Verkehr global auf Elektroantrieb umzustellen. Interessanterweise können diese Fabriken auch vollständig ökologisch arbeiten, wenn sie nach einiger Zeit die alten Batterien recyceln und ihre Energie aus und Wind und Sonne beziehen wie es im Businessplan [2] der Tesla Motors Inc. bereits vorgezeichnet ist.

Fazit

Die Zukunft wird die Batterie ein zentrales Produkt der Industrie. Die Batterien werden, für heutige Verhältnisse, in unvorstellbaren Mengen hergestellt werden. Zum Glück sind die notwendigen Materialien, Lithium, Graphit, Aluminium und andere Materialien, weltweit verfügbar zumindest gibt es keine ernsthafte Rohstoffknappheit da diese Elemente relativ häufig auf der Erde vorkommen.
Andere Batterie Technologien neben Lithium werden unbedeutend, vergleichbar dem Siegeszug von Silizium gegenüber anderen Halbleitern.

Zum Weiterlesen: 
Teil 1: Meine Erfahrungen mit dem Tesla
Teil 2: Tesla auf großer Fahrt
Warum Speicher billig werden, die Wirkung der Lernkurve.

Quellen:

[1] Brad Berman,  What the Tesla Model S Battery Replacement Price Doesn’t Say
[2] Tesla Gigafactory (PDF)
[3] Dirk Uwe Sauer, Speicher in netzgekoppelten PV-Anlagen, 3. VDI-Fachkonferenz – Energiespeicher für die Energiewende, Mainz 04.06.2013

Sonntag, 17. Juni 2012

Norwegen die Superbatterie

Die größten Batterien der Welt können etwa 100 MWh (100.000 kWh) speichern. Das ist die Strommenge, die ein durchschnittlicher Deutscher in 12 Jahren verbraucht. Das größte Pumpspeicherkraftwerk in Deutschland, Goldisthal, hat etwa hundertmal mehr Kapazität, 8,4 GWh Strom. Soviel als Vorrede um die Größenordnungen in Erinnerung zu rufen, über die man spricht, wenn es um die Speicherkapazität geht.

Norwegen, eine andere Dimension

Die Speicherseen in Norwegen spielen in einer anderen Liga, die erschlossene Kapazität beträgt 84 TWh, das entspricht ziemlich genau 10.000 mal Goldisthal. Das bedeutet, auch wenn  wir jedes Jahr 100 solche Speicher bauen würden, erst nach hundert Jahren hätten wir die gleiche Speicherkapazität!

Speichersee ist nicht gleich Pumpspeicherkraftwerk

Ein Speichersee ist ein See, der hinter einen Staudamm liegt und Wasser zurückhalten kann. Je mehr es regnet, um so mehr Wasser fliest in den See und der Wasserspiegel steigt. Wird Strom benötigt, öffnet man eine Schleuse und leitet das Wasser über eine Turbine und erzeugt damit Strom. Der See leert sich langsam. Je nach Bauart und Genehmigung kann der Wasserstand um mehrere zehn Meter absinken und später durch Zufluss wieder ansteigen.
In einem Pumpspeicherkraftwerk ist es zusätzlich möglich, durch Pumpen Wasser in den See zu Pumpen, so dass man nicht auf Regen warten muss, um den See wieder zu füllen.

Virtuelle Pumpspeicher

In der Energiediskussion wird häufig gefordert, mehr Pumpspeicher zu bauen, damit überschüssiger Windstrom aus der Nordsee gespeichert werden kann. Da der Bau von solchen Kraftwerken einerseits teuer und andererseits nicht sehr beliebt bei der Bevölkerung ist, sucht man nach Alternativen.
Eine strategische Alternative sind die Speicherseen in Norwegen, auch wenn sie nicht als Pumpspeicher ausgelegt sind. Und das geht so: Wenn bei uns der Wind wieder mal heftig weht und mehr Strom produziert als genutzt werden kann, überträgt man den Strom über Unterwasserleitungen nach Norwegen. Dort wird der Strom von den Norwegern verbraucht, hauptsächlich um die Häuser elektrisch zu heizen. Gleichzeitig schaltet man aber die Turbinen der Speicherseen ab. Damit bleibt das Wasser im Speichersee bis wieder Bedarf entsteht.
Damit hat man einen virtuellen Pumpspeicher, der bis zu 20 GW Leistung aufnehmen kann, so groß ist nämlich im Durchschnitt der Stromverbrauch in Norwegen und Norwegen hat zu 99% eine Stromversorgung, die auf Wasserkraft basiert.

Stromleitungen nach Norwegen

Das einzige finanzielle Problem bei der Nutzung der größten "Batterie" der Welt, den Speicherseen in Norwegen, sind die Leitungen. Eine Leitung von Deutschland nach Norwegen kostet etwa 1000 € pro kW Leistungskapazität. Das ist eine überschaubare Summe, wenn man bedenkt, dass man für jeden Deutschen etwa ein Kilowatt Kapazität benötigt. In der Summe sind die Zahlen natürlich gewaltig, um 20 GW anzuschließen, benötigt man 20 Mrd.€, eine große Summe, die allerdings im Vergleich zu anderen Investitionen im Bereich der erneuerbaren Energien eher gering erscheint, man bedenke, dass das etwa der Betrag ist, der jedes Jahr in den Ausbau der Fotovoltaik geflossen ist.  
Ungleich teurer wären vergleichbare Batterien, diese würden mindestens 100 €/kWh kosten, oder in anderen Worten, um die 84 TWh von Norwegen mit Batterien abzubilden, benötigt man 84.000 Mrd.€. Eine absolut utopische Summe, die das Bruttosozialprodukt der Erde (56.000 Mrd.€) übertrifft!

Das Problem der Politik

Jedem Ingenieur und auch jedem wirtschaftlich denkenden Menschen erschließt sich sofort der Vorteil dieser Superbatterie. Allerdings sollte auch beachtet werden, dass die Anbindung eines anderen Landes an das Stromnetz in einem derartigen Umfang sorgfältiger politischer Abwägung bedarf. Was würde passieren, wen es zu einem Boykott käme, was wenn die Preise willkürlich verändert werden, aus der Abhängigkeit von Öl haben wir da einiges gelernt. Trotzdem wird es in Zukunft sinnvoll sein, diese Speicherkapazität optimal in eine ökologische, nachhaltige Energieversorgung einzubinden.

Mehr zur Problematik von Stromleitungen und Energiespeicher.

Freitag, 2. Dezember 2011

IRES Konferenzsplitter 2011

Die IRES 2011 Konferenz in Berlin hat sich , wie jedes Jahr, mit der Speicherproblematik beschäftigt. Diese, noch von Hermann Scheer 2006 ins Leben gerufene Veranstaltung, soll das Problem der Speicher, die ja mit dem Umstieg zu erneuerbaren ein wichtiges Element sind, adressieren. Mit über 600 Teilnehmern war das Event im Berliner Congress Centrum, einem alten DDR Bau, gut besucht.
Berliner Congress Centrum

Speichergröße
Thematisch stand unter anderem die Frage im Mittelpunkt, wie viel Speicher brauchen wir. Das Resultat liegt bei mindestens eine Woche Stromspeicherkapazität! In anderen Worten 11 TWh oder 11.000 GWh oder 11.000.000 MWh oder 11.000.000.000 kWh. Man würde nun vermuten, dass Speicher mit vielen GWh Kapazität vorgestellt wurden. Das war aber selten der Fall. Die meisten Lösungen, zumeist Batterien, bewegten sich im einige 100 kWh Bereich. Sehr unbeliebt war die Frage nach dem Preis, die zumeist mit "noch nicht bekannt" oder in Zukunft niedriger als 1000 €/kWh beantwortet wurde.
Bemerkenswerterweise wurde ein Vortrag über den Lageenergiespeicher, der immerhin 2 TWh speichern kann, abgelehnt. Das Poster dazu durfte zwar ausgestellt werden, erschien aber erstaunlicherweise nicht im Poster-Verzeichnis. Man sollte wissen, dass Scheer ein frenetischer Anhänger von dezentralen Lösungen war. Ein Ansatz der in einem Stromnetz sehr fragwürdig ist, da nur ein gutes Leitungsnetz die Chance zum Speichern des Stroms bietet. Ohne Leitungsnetz müsste jeder Haushalt wohl Strom für ein halbes Jahr aufbewahren, ein unmögliches Unterfangen.
Stromangebot und -nachfrage im Jahreslauf und die zwergenhaften Pumpspeicher
Thermische Speicher
Ein weiterer Aspekt waren Verfahren zum Speichern thermischer Energie. Eigentlich ein Unding, Strom in Wärme umzuwandeln, um die Energie dann nach einiger Zeit als Wärme abzurufen. Jede thermische Solaranlage könnte es besser, aber im Anbetracht der fehlenden Speicherkapazitäten eine Art "Notnagel".
Tatsächlich ist die Wärmekapazität aller Warmwasser-Boiler erheblich, wie eine kleine Abschätzung zeigt. Bei 30 Mio. Boilern, á 200 l ergibt das beim Aufheizen von 10 °C auf 80°C eine Energiesenke für 490 GWh Strom, der auf dem Markt oft nahezu kostenlos in Zeiten der solaren Überproduktion ist, der aber dem Betreiber der PV-Anlage etwa 30ct/kWh bringt. Mithin würden bei so einem Aufheiz-Zyklus 147Mio. Euro "verbrannt" oder verkocht, je nach Perspektive.
Elektroautos
Die große Hoffnung, dass wir unsere regenerative Energie in den Batterien unserer Elektroautos speichern können, ist zum Teil richtig. Um alle 30 Mio Elektroautos der Zukunft (2030?) aufzuladen, benötigt man eine vergleichbare Strommenge wie für das Heizen der Wasserboiler. Allerdings ist die Energie schlecht abrufbar, da vermutlich nur wenige eine geleerte Batterie nach einer dunklen Nacht wünschen.
Bemerkenswert ist, dass etwa die Hälfte der Autos tagsüber auf Firmenparkplätzen stehen, die gute Plätze für das Tanken von Solarstrom sind. Die verschiedenen technischen Hürden, etwa Zähler, Stecker, Anschlussleistung usw. wurden angesprochen und können in der Praxis ein Problem werden.
System Energieangebot und Nachfrage, Michael Sterner vom IWES

Wasserstoff, Erdgas und Erdgasnetz
Die Umwandlung von Strom in Wasserstoff ist bekannt und erscheint in vielen Vorträgen. Ein weiterer Schritt ist die Umwandlung von Wasserstoff in Methan, wie er von Michael Sterner propagiert wird. Dieses Erdgas kann man relativ problemlos in ungeheuren Mengen in das Erdgasnetz einspeisen. Damit kann man in der Tat alle überschüssigen Strom, der durch Wind- und Solarkraftwerke entsteht, abfangen. Vorausgesetzt, es werden sehr viele Elektrolyseure im GW Bereich bereitgestellt. Der nicht unerheblicher Flächenbedarf sein erwähnt.
Diese Projekte werden von der Autoindustrie vorangetrieben, weil man eine gewisse Hoffnung hat, damit den Verbrennungsmotor am Leben zu erhalten. Vergleicht man aber den Wirkungsgrad eines Verbrennungsmotors, der bei ca. 20% liegt, mit den hocheffizienten Elektromotoren (>90%), und kalkuliert noch die Umwandlungsverluste bei Elektrolyse und Methanisierung ein, so bleiben traurige 10% des Solarstroms für eine sinnvolle Verwendung übrig. Ein Elektroauto kann hingegen 80% der Solarenergie sinnvoll nutzen.

Die Folgerungen von Matthias Popp

Fazit
Die Konferenz hat einen guten Überblick geliefert, wenn auch nicht alle Fragen geklärt sind, so wird zumindest das Thema Energiespeicher inzwischen ernst genommen. Eine Lösung ist aber noch nicht in Sicht. Im Gegensatz zur IRES 2010 habe ich in diesem Jahr jeglichen visionären Vorschlag zu Speichern vermist.

Weitere Berichte von Energiespeicher Konferenzen:

Samstag, 13. August 2011

Pumpspeicherkraftwerke

Die mit großem Abstand meist genutzte Art, elektrische Energie zu speichern, ist die des Pumpspeicherkraftwerks. Das Prinzip ist einfach und seit hundert Jahren bewährt. Wasser wird aus einem Fluss oder See in ein hoch gelegenes Speicherbecken gepumpt. Dabei nimmt das Wasser die elektrische Energie, die zum Antrieb der Pumpe verwendet wird, in Form von potenzieller Energie auf. Ganz ähnlich dem Beispiel des Wassereimers, der in der Einführung beschrieben wurde. Die gespeicherte Energiemenge hängt direkt von der Wassermenge und der Pumphöhe ab.
Abbildung: Das Pumpspeicherwerk Rönkhausen, im Oberbecken können eine Million Kubikmeter Wasser gespeichert werden, mit 270 m Höhendifferenz können damit 0,73 GWh gespeichert werden. (Bildquelle: Wikipedia) 


Ein typisches Pumpspeicherkraftwerk in Deutschland hat eine Fallhöhe von 400 m, da die meisten Mittelgebirge sich nicht wesentlich höher gegenüber den umliegenden Tälern erheben. Für die Planung großer Speicherkapazitäten ist es interessant, wie groß die Energiemenge ist, die man pro Quadratmeter speichern kann. Denn für die Speicherung muss Land überflutet werden und jeder kann sich überlegen, wie teuer ein Quadratmeter Land in Deutschland ist. Der betrachtete Speichersee soll einen Wasserspiegel haben, der bis zu zehn Meter schwanken kann, damit kann man pro Quadratmeter zehn Kubikmeter Wasser speichern. Das ist die Wassermenge für ein kleines Gartenschwimmbecken aus Plastik, wie man es im Supermarkt kaufen kann. Unter diesen Annahmen findet man, dass auf einem Quadratmeter eine Speicherkapazität von 10 kWh vorhanden ist. Damit könnte man zehn Stunden eine Maschine mit 1 kW Leistungsaufnahme betreiben oder hundert Stunden einen Computer, mit 100 W Leistungsaufnahme, rechnen lassen.

Bedarf an Speicherfläche
Für die Energieversorgung mit erneuerbaren Energien müssen für jeden Einwohner im Durchschnitt 147 kWh Speicher bereitgestellt werden. Damit benötigt jeder einen Stausee mit einer Fläche von etwa 15 m². Dies erscheint nicht allzu viel, rechnet man dies jedoch auf die Einwohnerzahl von Deutschland, 80 Millionen, hoch, so hat dieser Stausee eine Fläche von 1200 km². Das ist mehr als die doppelte Fläche des Bodensees.

Es ist schwer vorstellbar, dass es innerhalb von dreißig Jahren gelingt, in Deutschland eine derart große Fläche mit Stauseen zu überfluten. Die meisten höher gelegenen Gebiete sind in Deutschland unter Natur- oder Landschaftsschutz, ein nicht unerhebliches Hindernis, will man das Gelände überfluten. Weiterhin müssten für derart große Stauseen viele Orte und Städte überflutet werden, was die Akzeptanz in der lokalen Bevölkerung auf nahe null absinken (sic!) lässt. Das geplante Pumpspeicherkraftwerk Atdorf im Schwarzwald, mit einer oberen Seefläche von einem Quadratkilometer, stößt auf massiven Widerstand, obwohl es sich um ein unbewohntes Gelände handelt. Das Pumpspeicherkraftwerk Atdorf kann als "Kleinanlage", 13 GWh Kapazität, im Vergleich zu den notwendigen Kapazitäten von 12.000 GWh angesehen werden.

Alternativen:

In weiteren Blogposts beschrieben
Berechnungshinweis:
Erstaunlicherweise findet man im Internet selten die Speicherkapazität von Speicherkraftwerken, häufig wird nur die Turbinenleistung angegeben. Wer gerne mal die Kapazität eines Speichersees nachrechnet, für den ist folgende Formel Hilfreich:
Die Energiemenge E berechnet sich aus der Schwerkraft g = 9,81 N/kg, der Masse des Wassers m und der Fallhöhe h des Wassers.
E = g × m × h
Da man meist nicht die Masse m kennt, eine einfache Berechnung mit der Seefläche A (in m²):
E = g × A × h × 1000 * Pegelschwankung(in Metern)
Das Ergebnis ist die Energiemenge in Joule, das ist unpraktisch, da man in der Stromversorgung eher in kWh denkt, daher muss das Resultat noch durch 3.600.000 geteilt werden.
Als Faustformel kann man sich auch merken: 10kWh pro Quadratmeter.