Weitere Blogs von Eduard Heindl

Innovationsblog neue Ideen | Some Science my research | Energiespeicher Bedeutung und Zukunft | Energy Age the big picture (engl.)
Posts mit dem Label Druckluftspeicher werden angezeigt. Alle Posts anzeigen
Posts mit dem Label Druckluftspeicher werden angezeigt. Alle Posts anzeigen

Donnerstag, 28. Januar 2016

Speicherforschung in Deutschland

Forschung zu Energiespeicher in Deutschland

Deutschland ist ein Land der Forschung und Entwicklung, durch gute Universitäten, Hochschulen und Industrie könnten wichtige Zukunftsfelder besetzt werden. Eins der zentralen Themen der globalen Energiewende ist das Speichern von Strom. Hier bahnt sich in Deutschland ein Desaster an!

Die zentralen Elemente einer Energieversorgung

Energieversorgung mit Elektrizität benötigt im wesentlichen drei Elemente: 
  • Umwandlung einer Energieresource in Strom
  • Speichern des Stroms oder der Energieresource
  • Versorgungssystem zu den Energieabnehmern
Im alten Energiesystem war die Resourcen Kohle, Erdgas und Uran. In Deutschland werden sehr wirtschaftliche Kohlekraftwerke gebaut, aber Kohle ist in einer Welt die CO2 nur begrenzt emittieren will, keine Energiequelle der Zukunft.
Erdgas ist eine sehr saubere Energiequelle, allerdings ist hier Deutschland von anderen Ländern als Lieferant abhängig. Uran wurde aus politischen Gründen als Energiequelle gestoppt. 
Folge: In diesen Bereichen wird aufgrund des Strukturwandels in der Energieversorgung das vorhandene technische Know How in Zukunft keinen wesentlichen Wert haben.

Die Umwandlung von Solarenergie mit Solarzellen wird künftig die weltweite Energieversorgung dominieren. Obwohl in Deutschland diese Energiewende eingeleitet wurde, ist es nicht gelungen, die Herstellung von Photovoltaik in Deutschland zu halten. Allerdings ist die dafür notwendige Technologie, Solarzellen aus Silizium und Glasscheiben herzustellen, inzwischen so gut verstanden, dass es um Fertigungsanlagen in aller Welt geht. Hier kann der Maschinen und Anlagenbau als Zulieferer dienen.

Die Energiespeicher

Eine fluktuierende Energiequelle wie die Sonne erfordert Energiespeicher, und mit dem globalen Ausbau der Photovoltaik, allein im Jahr 2015 wurden weltweit ca 60 GW installiert, wächst der Speicherbedarf. Eine wahre, sich auftuende, Marktlücke!

Daher müssen gewaltige Ressourcen in die Entwicklung leistungsfähiger Speicher fliesen um weltweit konkurrenzfähige Produkte anzubieten.
Kompetenz an falscher Stelle, Speicherkompetenz Weltanteil. (Quelle: ISI 2015 [1])
Auf der Liste der möglichen Energiespeícher liegt Deutschland in drei Bereichen in der Spitzengruppe: Wasserstoff, Pressluftspeicher (CASE), Schwungräder.

Betrachten wir die drei Technologien im Einzelnen:

Wasserstoff

Wasserstoff ist theoretisch ein sehr guter Energiespeicher, betrachtet man die Energie pro Masseneinheit, dann ist er sogar der beste chemische Energiespeicher. Soweit die Theorie. Leider hat Wasserstoff einige gravierende Probleme, zum einem ist die Umwandlung von Strom zu Wasserstoff und zurück nicht besonders effizient. Weiterhin gibt es erhebliche Probleme Wasserstoff effizient zu speichern. Daher mag es auch nicht verwundern, dass kein anderes Land in diesem Bereich forscht. 
Eine ausführliche Analyse zum Thema Wasserstoffzeitalter habe ich in einem Blogbeitrag "Is the Hydrogen age rising?", durchgeführt.
Die technologische Führerschaft mit 94,8% ist bemerkenswert, allerdings völlig nutzlos, da wohl das Wasserstoffzeitalter nur in Science Fictions kommen wird.

Compressed Air Energy Storage CASE

Luft mit billiger Energie zu komprimieren und bei Bedarf wieder über eine Turbine freizusetzen ist ein sehr logischer Ansatz, zumindest auf den ersten Blick. Luft ist kostenlos, Kompressoren sind allgegenwärtig, alles erscheint einfach. Leider hat die Physik für eine nicht adiabatische Kompression eine Formel, die einen sehr schlechten Wirkungsgrad zwangsläufig zur Folge hat. Praktisch liegt dieser Wirkungsgrad bei 45%, das bedeutet mehr als die Hälfte der Energie kommt nicht wieder zurück. 
Aufwendige neue Verfahren ermöglichen zwar eine adiabatische Kompression, die theoretisch einen sehr guten Wirkungsgrad hat, allerdings zum Preis sehr hoher Systemkosten. 
Leider ist damit aber das Problem noch nicht gelöst, man benötigt einen Speicher, am besten eine Salzkaverne. Diese gibt es in Norddeutschland zwar reichlich, weltweit sind sie aber geologisch eher eine Kuriosität. Das mag auch der Grund sein, dass sonst fast niemand an dieser Technologie forscht oder anders formuliert, 73,8% Weltanteil in der Speicherkompetenz nicht so schwer zu erreichen war.

Schwungrad

Ein Schwungrad dürfte der erste technische Energiespeicher überhaupt gewesen sein, nämlich in der Form einer Töpferscheibe. Man kann diese Technik erstaunlich weit treiben und gelangt dann zu extrem schnell rotierenden Rädern aus Kohlefaser. 
Das Limit der Schwungräder wird durch die Zentrifugalkräfte und die Materialfestigkeit festgelegt. Kohlefasern, wirklich ein high tech Material, erlauben nur sehr begrenzte Speicher mit etwa 4 kWh in einem massiven Stahlkessel. Ja der Stahlkessel ist nötig, da beim Versagen des Schwungrads derart viel Energie freigesetzt wird, dass selbst dicker Stahl durchschlagen wird. So bestehen heutige Schwungrad-Anordnungen aus wesentlich mehr Stahl als Schwungrad! Das führt zu einer schlechten Energiebilanz und ungünstigen Platzbedarf. 
Die Folge, praktisch niemand setzt Schwungräder praktisch ein und ein Forschungsvorsprung ist nicht so wertvoll als gedacht.

Wo liegt die Zukunft

Welche Technologie in Zukunft dominieren wird, kann man nicht sicher sagen, aber man kann sich die Wachstumsfelder und den Technologieeinsatz ansehen:
Relevante Speicher auf dem Weltmarkt und das jeweilige Wachstum. (Quelle: ISI 2015 [1])
Betrachtet man die heute am weitesten verbreitete Technologie, so Dominiert mit weitem Abstand, man beachte die logarithmische Skala, PHS, Pumpspeicherkraftwerke, mit 97,5%! Und wie hoch ist der deutsche Anteil im Bereich des Wissens um diese Technik? Leider nur klägliche 4,4%. Das könnte man natürlich ändern, wenn man die Forschung zum Lageenergiespeicher fördern würde, aber diese erfolgt bisher noch nicht.

Die am stärksten wachsende Speichertechnologie sind LiB, Lithium Ionenbatterien, die im Mittel in den letzten fünf Jahren um unglaubliche 90% pro Jahr gewachsen sind. Der Grund ist klar, Batterien für Elektroautos werden daraus hergestellt und Speicher für Solaranlagen. Da Deutschland erheblich von der Autoindustrie abhängt als ein ganz klarer Fall, hier muss geforscht werden. Leider liegt das Know How bei erschreckend niedrigen 3,3% im weltweitem Vergleich. 

Der Bereich mit relativ großem Anteil am Markt und beachtlichen Wachstumszahlen ist die thermische Energiespeicherung. Hier liegt das Wissen um diese Technologien bei praktisch Null, oder um genau zu sein, bei 0,1%.

Desaster der Technologieförderung

Betrachtet man die Lage der deutschen Speicherforschung und des erarbeiteten Wissens, kann man nur ein Fazit ziehe: Nicht Zukunftsfähig.
Es wurden über Jahrzehnte Technologien entwickelt, von denen sich andere längst verabschiedet haben, weil es kein Potenzial gibt und man hat die Technologien, die wirtschaftlich am bedeutendsten sind völlig vernachlässigt. 
Daher muss man massiv versuchen, zumindest in der Batterietechnik und bei Pumpspeichertechnologien (Hier ist Österreich führend) Anschluss zu finden.

Die Ressourcen sind da, man muss nur die Forschung in nicht entwicklungsfähige Technologien einstellen.

Quellen:

[1] Gesamt-RoadmapStationäre Energiespeicher 2030, Fraunhofer-Institut für System und Innovationsforschung ISI, Dezember 2015




Freitag, 8. Mai 2015

World Energy Storage Forum 2015

Bericht vom World Energy Storage Forum 2015

Vom  28-30 April 2015 wurden in Rom die neusten Trends bei der Speicherentwicklung auf dem WESF vorgetragen. Im Zentrum standen wieder Batterien, es gab aber auch einige Vorträge zu Pumpspeichern. Der Lageenergiespeicher (Hydraulic Rock Storage, HRS) war mit einem Stand vertreten, der reges Interesse verursacht hat.

Wie leistungsfähig werden Batterien?

Im Vortrag von George Crabtree der das JCESR in Chicaco leitet, gab es einen Blick in die zukünftige Entwicklung von Batterien.
Abbildung 1. Einordnung von Batteriesystemen, Quelle: JCESR
Dabei wurde in einem Diagramm, Abbildung 1, dargestellt, dass noch lange nicht das Ende der Fahnenstange bei der Entwicklung von Lithium Batterien erreicht ist. Sowohl in Bezug auf die Energiedichte pro Kilogramm, wichtig für Autos, aber auch beim Platzbedarf kann es erhebliche Fortschritte geben. Interessanterweise ist die Batterie eines Tesla Model S  um den Faktor zwei kompakter als vom Nissan Leaf, auch die Energiedichte ist wohl um 50%, bezogen auf das Gewicht, besser.

Preisentwicklung

Aber auch die Preise der Batterien werden sicher sinken. Die berühmte Pressekonferenz von Elon Musk zur Powerwall, der neue Batteriespeicher für Jedermann, war noch nicht gegeben, aber die Werte lagen in der Luft.
Video: Pressekonferenz von Tesla mit Elon Musk am 1. Mai 2015 in LA
Es ist natürlich sehr schwierig, die zukünftigen Preise von Batterien vorherzusagen, aber mit dem Wert 350$/kWh für die Powerwall ist ein wichtiger Meilenstein erreicht. Eine Übersicht, die viele Prognosen zusammenfasst, ist in Abbildung 2 gezeigt, die ebenfalls von Crabtree präsentiert wurde.
Abbildung 2: Zukünftige Entwicklung der Batteriepreise,
Quelle: Nykvistand Nilsson, Nature Climate Change 5, 329 (2015)
Der Trend zeigt stark sinkende Preise, allerdings scheint es auch im Jahr 2030 nicht möglich zu sein, Energie für weniger als 150$/kWh in Batterien zu speichern. Daher müssen auch andere Technologien für das Speichern von Energie untersucht werden. Die günstigste bekannte und praktisch umgesetzte Methode ist das Pumpspeicherwerk. Ein weiteres verfahren ist Power to Gas, das von Manfred Pils, Austrian Power Grid, vorgestellt wurde. Das große Problem sind die vielen Verluste, die bei den vielen Umandlungen entstehen, wie in Abbildung 3 gut sichtbar wird. 
Abbildung 3: Probleme bei der Energieeffizienz mit Power to Gas, Quelle: Manfred Pils
Nur etwa 36% der eingesetzten Energie werden im günstigsten Fall wieder zu Strom. 

Marktanteil von Speichertechnologien

Interessant ist auch zu sehen, welche Speichertechniken wirklich in der Praxis eingesetzt werden. Dies hat Jean-Christophe Bestaux, ALINEASOLAR in Spanien, vorgestellt. Die Pumpspeicher dominieren derart, dass in Abbildung 4 die anderen Techniken in einer "Lupendarstellung" betrachtet werden mussten.
Abbildung 4: Marktanteile der Speichertechnologien, Quelle: J-C Bestaux
 Weltweit sind 140.000 MW Pumpspeicher vorhanden, nur 976 MW machen alle anderen Technologien zusammen aus. Dabei dominieren Druckluftspeicher, Compressed Air Storage (CAES) mit etwa der Hälfte. Lithiumbatterien sind mit 100 MW nahezu vernachlässigbar. Das muss aber nicht bedeuten, dass das in alle Zukunft so bleibt! Vor zehn Jahren war die Photovoltaik in einer ähnlichen Rolle, auf Dauer ist eben die Preisentwicklung und die Marktentwicklung entscheiden. 

Leistungsgradienten

Ein interessanter Test für Pumpspeicher war die Sonnenfinsternis am 20 März 2015. In einem Vortrag von Peter Matt von den Illwerken in Österreich wurde gezeigt, wie die schnelle Reaktion der Pumpspeicher das Nachregeln bei schnell veränderlicher Leistung von Solarleistung ermöglicht. Wie in Abbildung 5 zu sehnen ist, war der Gradient der Leistungszunahme ähnlich hoch, wie er erst in einigen Jahren, dann aber jeden Tag, bei Ausbau der Photovoltaik zu erwarten ist.
 
Abbildung 5: Abfangen extrem schneller Leistungsveränderung, Quelle Peter Matt, Illwerke.

Fazit:

Die Tagung in Rom war hervorragend organisiert und viele interessante Vorträge haben das Spektrum der Speichertechnologien angesprochen. Leider haben nur wenige Vorträge mit exakten Daten gehandelt und man hatte oft das Gefühl, damit soll ausgeblendet werden, dass aktuell Batteriespeicher kein wirklich funktionierendes Geschäftsmodell am Strommarkt haben.


Sonntag, 9. Juni 2013

Bericht von der Speicher Tagung des VDI

Bericht von der Speicher Tagung des VDI 

Zum dritten Mal fand die VDI - Fachkonferenz "Energiespeicher für die Energiewende", diesmal in Mainz, unter der Leitung von Professor Michael Sterner statt.
Die komplexe Gesetzgebung für Energiespeicher, visualisiert von Hauptmeier (RWE)

Überblick von T. Bischoff

Im Überblicksvortrag von Thorsten Bischoff aus dem Referat 14 des Bundesministeriums für Umwelt erläuterte einige Fehler bei der Speicher Diskussion.
Unternehmen suchen neue Geschäftsmodelle für Speicher, dabei muss man zwischen netzdienlichen* Leistungen im Sekunden und Minutenbereich und auf der anderen Seite mittel- und längerfristiger Speicherung unterscheiden. Bisher wurden alle diese Leistungen von Großkraftwerken erbracht, ohne dass man über einen Markt für diese Leistungen nachgedacht hat.
Im Gegensatz zur offiziellen Regierungsmeinung geht Bischoff davon aus, dass 2020 bereits 45% fluktuierenden Erneuerbare Energien (EE) am Netz sind und damit die Speicherung von großen Strommengen früher kommen wir.
Zunächst ist es billiger, Überschussstrom wegzuwerfen als zu speichern, aber nach der schwierigen Übergangsperiode werden Speicher sehr wichtig.
Die aktuelle Förderung von Batterien macht nur Sinn, wenn sie netzdienlich sind, da es damit möglich wird, die Mitttagsspitze bei der Solarenergie zu kappen, wie er eindrucksvoll zeigte.
Ein wichtiger Hinweis war noch, dass es sehr teuer ist wenn nationale Autarkie angestrebt wir, im Verbund mit den Nachbarstaat gewinnt jeder.

Verschiedene Speicheraspekte

Professor Albert Moser von der RWTH Aachen analysierte fünf Szenarien des Speichersausbaus. Dabei zeigt sich, dass erst ab 80% EE Anteil Langzeitspeicher ökonomisch sinnvoll werden. Allerdings hat er die Rechnung mit Power-to-Gas durchgeführt, das einen sehr schlechten Speicherwirkungsgrad hat (gezeigt sind bisher 25%, es wurde sehr optimistisch mit 40% gerechnet.)
Ein Szenario das gegenüber einer vollständigen Speicherung nur die halbe Speicherkapazität hat erreicht die wirtschaftlichste Nutzung. Es sei angemerkt, das dies empfindlich von der Flexibilität der Kraftwerke abhängt, wie Hans-Martin Henning zeigte, mithin von der Anzahl der Erdgas Turbinen die Strom ins Netz liefern können. Clemens Triebel zeigte, dass 1GW Batterien etwa 10GW "must run" Kapazität wie Braunkohle oder Kernkraftwerke im Bezug auf Netzstabilisierung ersetzen kann.
Professor Dirk Sauer, ebenfalls von der RWTH Aachen, analysierte den aktuellen Batterie Markt. Die Preise für Bleibatterien liegen im Bereich von 600–2500€/kWh und Lithium-Ionen-Akku im Bereich von 2000–3800€/kWh. Offensichtlich sind diese Preise weit überhöht, wenn man die Preise der Autobatterie-Systeme vergleicht. Hier werden offensichtlich die hohen Entwicklungskosten gerade umgelegt.
Thomas Bruckner von der Universität Leipzig zeigte, dass in einigen Regionen Norddeutschlands die Zukunft in Form von sehr hohen Windenergie Anteilen bereits begonnen hat und man dabei ein gutes Modell für das zukünftige Stromnetz hat.

Neue Speichertechnologien

Am 2.Tag präsentiert Horatio von John, Geschäftsführer von der gravity power GmbH Deutschland, einen neuen Typ Schwerkraft Speicher, wie er von Jim Fiske in Kalifornien erfunden wurde. Das System ähnelt dem hier allen bekannten Lageenergiespeicher, allerdings arbeitet es vollständig unterirdisch, was erhebliche Erd-, Gesteinsbewegungen erfordert. Leider hat das Unternehmen auch noch keinen Kunden für eine Pilotanlage gefunden.
Betonkugeln statt Betonköpfe, kreative Speicherlösungen, hier von Jochen Bard präsentiert.
Ein weiterer Schwerkraftspeicher wurde von Jochen Bard präsentiert, dabei werden Betonhohlkugeln im Meer in 700m Tiefe versenkt und mit Überschussstrom leergepumpt. Dies ist für viele Offshore Windparks interessant, allerdings nicht in der Nordsee, da diese nur 20–50m tief ist. Auch hier gibt es noch keinen Prototypen, allerdings plant die Firma Hochtief demnächst eine kleine Versuchsanlage.
Richard Brody aus den USA präsentierte ein weiteres physikalisches Verfahren, indem Luft komprimiert wird und die Wärme zum Verdampfen von Wasser eingesetzt wird. Originell an dem Konzept war, dass ein Generator, wie er in Windkraftanlage eingesetzt wird, mit einem Schiffsdiesel kombiniert wurde, beides relativ günstige Maschine, da aus der Serienproduktion. Die Dieselmaschine übernimmt die Verdichtung und wird vom Generator mit Überschussstrom angetrieben, es wird daher kein Diesel eingesetzt! Die Pressluft wird in preiswerten Pipelinerohren gespeichert. Bei Strombedarf wird der Vorgang einfach umgekehrt. Laut Brody hat solch ein System einen Wirkungsgrad von 55%,sehr viel im Vergleich zu den 42%, die man bisher bei nichtadiabatischen Druckluftspeichern erreicht, allerdings wurde der Wert nicht experimentell gezeigt, so hat der Autor Zweifel.
Interessant war der Hinweis, dass in den USA immer, gesetzlich vorgeschrieben, geprüft werden muss ob eine neue Hochspannungsleitung nicht durch einen Speicher vermieden werden kann.

Power to Gas für Autos

Hermann Pengg-Bührlen von Audi zeigte, wie ein Erdgasfahrzeug komplett CO2 neutral werden kann. Dazu wurde der Lebenszyklus eines Autos analysiert:
20% der CO2 Belastung entstehen bei der Herstellung, 79% während der Nutzung durch den Treibstoffverbrauch und 1% bei der Entsorgung.
Erneuerbare Kraftstoffe, wie Ethanol stehen im Wettbewerb zu Nahrungsmittel und sind damit nicht nachhaltig. Die Lösung von Audi ist, aus Windstrom Erdgas zu erzeugen, und dieses Erdgas an normalen Erdgastankstellen zu tanken. Dieser Ansatz ist sogar geringfügig besser als ein Elektroauto, da es keine CO2 aufwendige Batterie benötigt.

Fazit

Die Energiewende hat ein grundlegendes Nachdenken über die technische Struktur unseres Stromversorgungssystems eingeleitet. Viele neue Erkenntnisse zum Funktionieren eines zuverlässigen Stromnetzes sind untersucht worden oder werden gerade genauer betrachtet.
Inzwischen gibt es auch immer mehr Ideen zum Bau von Speichern. Dabei werden verschiedene Ideen der Schwerkraftnutzung immer wichtiger.
Welche Lösungen sich durchsetzen beleibt also spannend.

*netzdienlich: Ein Stromnetz muss die Frequenz halten und kurze Lastspitzen abfangen, alle Systeme die das unterstützen sind netzdienlich. 

Freitag, 9. November 2012

Power to Gas

Power to Gas? Künstliches Erdgas als Speicher

Die Bundesregierung unterstützt die Technologie "Power to Gas" und viele, etwa die DENA,  finden dies eine sinnvolle Idee Energie zu speichern. Daher will ich das Konzept einmal gründlich analysieren.

Ausgangspunkt

Die Grundidee von Power to Gas liegt in der Umwandlung von überschüssigen Strom aus Windkraftwerken oder aus Solarzellen in Wasserstoff. Da Wasserstoff aber nur schlecht zu speichern ist und mit unserem Erdgasnetz nicht kompatibel ist, wird der Wasserstoff über eine chemische Reaktion zusammen mit CO2 in Methan umgewandelt. Methan ist der chemische Begriff für Erdgas, wie es durch Millionen von Gasleitungen in die Haushalte transportiert wird. Verbrennt man dieses Methan wieder in einer Gasturbine, dann kann man damit Strom erzeugen und hat auch zu Zeiten von Strommangel eine sichere Energiequelle.

Wo liegen die Denkfehler?

Elektrolyse

Der erste Schritt, in diesem Verfahren, die Elektrolyse, kennt jeder noch aus dem Chemieunterricht. Dabei wird im Hofmannschen Apparat Gleichstrom angelegt und schon perlt an der Kathode Wasserstoff nach oben.
Hofmannscher Apparat zur Wasserstofferzeugung
Dieses Verfahren nutzt als Elektroden Platin, ein sehr teures Edelmetall! Für den großtechnischen Einsatz ist es daher erforderlich ein preiswerteres Metall zu finden, hier ist Nickel das günstigste Metall. Dies erfordert aber, dass man eine höhere Spannung anlegt, als theoretisch notwendig wäre, Überspannung siehe Wikipedia, damit verschlechtert sich der Wirkungsgrad.  Der Wirkungsgrad hängt natürlich von den Details der Konstruktion ab, Greenpeace gibt für seine Anlage 73% an. Eine genaue Analyse des Wirkungsgrads findet man in der Studie des Fraunhofer Instituts ISE, die aufzeigt, dass ein wesentlich höherer Wirkungsgrad schwer unter realen Bedingungen zu erreichen ist.
Neben den Wirkungsgrad ist es schwierig, kurzzeitig hohe Ströme in einem Elektrolyseur umzuwandeln, wie es gerade für Systemen benötigt wird, die Spitzen bei der Solar- oder Windenergie nutzen sollen.

Methanerzeugung

Um aus Wasserstoff Methan zu erzeugen, das bedeutet Kohlenstoff anzulagern, benötigt man Kohlendioxid (CO2). Das erscheint zunächst erfreulich, da in der Atmosphäre zu viel CO2 ist. Leider kann dieses CO2 aufgrund der extremen Verdünnung nicht direkt verwendet werden. Eine Alternative ist, CO2 dort zu nutzen wo es entsteht, etwa bei der Verbrennung von Kohle, was extrem aufwendig und unökologisch ist, oder bei Biogasanlagen. Letztere erzeugen viel CO2 bei der Umwandlung von Pflanzen (Mais) in Methan. Prinzipiell ist das CO2 aus solchen Anlagen als Ausgangsstoff für die Methanerzeugung geeignet.  
In einem chemischen Reaktor wird unter Druck dann Methan erzeugt. Der Wirkungsgrad ist etwa 80%, da es sich um eine exotherme Reaktion handelt. Damit ist der Wirkungsgrad auch unabhängig vom technischen Fortschritt festgelegt.
Für die Lagerung und den Transport ist es notwendig das Methan zu verdichten. Dazu werden Pumpen benötigt, die einen kleinen Teil der Energie benötigen, die im Erdgas gespeichert ist. 
Der Gesamtwirkungsgrad der Methanherstellung ist das Produkt aus den einzelnen Wirkungsgraden!
In unserer Rechnung: 73% * 80% = 58% Wirkungsgrad

Umwandlung in Strom

Methan ist jedoch noch kein Strom! Das Ziel der Umwandlung von Strom in Methan war die Speicherung von Strom. Will man nur Methan als Erdgas zur Heizzwecken speichern, ist es wesentlich wirtschaftlicher, den Strom direkt in Warmwasserspeicher einzusetzen, man spart dann 42% Verlust und den riesigen Aufwand von Elektrolyseur und Methanerzeugung!
Strom kann aus Methan effizient in einer Erdgasturbine erzeugt werden. Dazu wird das Erdgas in der Turbine verbrannt, ähnlich einer Turbine im Düsenflugzeug, und zur Optimierung kann man die heiße Abluft zur Dampferzeugung nutzen und sozusagen als Nachbrenner noch eine Dampfturbine betreiben.
Der Wirkungsgrad von Erdgas-Dampfturbinen liegt zwischen 50% und 60%. Hier muss man beachten, dass hoher Wirkungsgrad immer über sehr teuere Systeme erkauft wird. Das macht Sinn, wenn eine Turbine 6000 Stunden im Jahr läuft (Grundlast). Wird die Turbine aber nur 1000 Stunden eingesetzt (Spitzenlast), ist es nicht sinnvoll den maximal möglichen Wirkungsgrad zu nutzen. Somit kann man annehmen, dass für die zukünftige Stromversorgung Turbinen für Spitzenlasten einen Wirkungsgrad von 50% aufweisen.
Zu beachten ist jetzt, dass der Gesamtwirkungsgrad mit dem der Methanherstellung multipliziert werden muss!
In unserer Rechnung gilt: 58% * 50% = 28% Wirkungsgrad!
Das bedeutet, von 100kWh, die eingesetzt wurden, erhält man nur 28kWh zurück.

An dieser Stelle werden häufig zwei Argumente in den Raum geworfen:
1. Wenn der Strom praktisch umsonst ist, dann spielt der Wirkungsgrad keine große Rolle
2. Man kann doch noch die Restwärme nutzen.
Die Nutzung der Restwärme ist theoretisch möglich, da wir aber von Spitzenlastkraftwerken ausgehen, ist der Aufwand unwirtschaftlich. Ein Fernwärmenetz, das nur 1000 Stunden im Jahr arbeitet wird kaum jemand wollen.

Denkfehler Strommarkt

Die Vorstellung, dass der Strom zukünftig bei starker Sonneneinstrahlung fast kostenlos ist, erscheint plausibel, da zumindest heute häufig sehr niedrige Strompreise auftreten, wenn die erneuerbaren Energien viel liefern. 
Ein zukünftiger Strommarkt wird aber sehr wohl auf dieses Marktsignal reagieren. Gibt es etwa häufig Strom für 2ct/kWh, dann ist es lohnend, damit den Warmwasserboiler im Keller aufzuheizen und damit (vorübergehend) elektrisch das Brauchwasser zu erwärmen und die Wohnung zu beheizen. Zudem werden andere "smarte" Teilnehmer, etwa Kühlhäuser nur noch dann ihre Klimaaggregate anschalten, wenn der Strom sehr billig ist. 
Daher erwarte ich, dass der Strompreis in einem solchem Umfeld nur sehr selten unter 2ct/kWh fällt, was aber immer noch ein sehr günstiger Einkaufspreis ist!
Steigt der Strompreis an, können alle jene Marktteilnehmer Strom in das Netz einspeisen, die ihn zuvor abgespeichert haben. Und jetzt kommt der Wirkungsgrad ins Spiel!
  • Ein Pumpspeicherkraftwerk hat einen Wirkungsgrad von 80%. Damit ist es theoretisch bereits bei 2ct/kWh/0,8 = 2,5ct/kWh lohnend, die Turbinen des Pumpspeicherkraftwerks anzuwerfen.
  • Kurz darauf kommen die Betreiber von Druckluftspeichern, diese haben heute einen Wirkungsgrad von 40%. Für sie ist ein Strompreis von 2ct/kWh/0,4 = 5ct/kWh der Grenzpreis, ab dem sie in das Netz mit Gewinn einspeisen können.
  • Und erst bei einem Strompreis von 2ct/kWh/0,28 = 7,1 ct/kWh wird es für den Betreiber der Erdgasturbine (Methan aus Wasserstoff, Wasserstoff aus Strom gewonnen) attraktiv, die Turbine anzuwerfen.
Zu beachten ist, dass diese Rechnung nur den Wirkungsgrad berücksichtigt, nicht die Investition in die jeweilige Technik. In erster Näherung ist aber nicht zu erwarten, dass der Betrieb großer Elektrolyseanlagen, Methanwandler und aufwendige Gasturbinen zum Nulltarif zu haben ist. Ganz im Gegenteil, diese kaum erprobte Technologie wird sehr teuer sein. Daher sollte man ein Auge auf Systeme mit hohen Wirkungsgrad werfen.

Pumpspeicherkraftwerke, die heute 99% aller Stromspeicher ausmachen, haben einen gewaltigen Vorteil, gerade wegen des Wirkungsgrads.
Die Weiterentwicklung des Pumpspeicher in Form des Lageenergiespeichers, ebenfalls Wirkungsgrad 80%, ist daher sinnvoll, da er in einem Strommarkt der Zukunft sehr gute Chancen hat sich zu amortisieren.

Das Konzept Power to Gas wird es aus den oben beschriebenen Gründen im Strommarkt der Zukunft sehr schwer haben.









Mittwoch, 8. August 2012

Kostenloser Strom

Gibt es kostenlosen Strom?

Bei der Diskussion um den Einsatz von Energiespeicher lese ich häufig, dass es in Zukunft kostenlosen Strom gibt und daher der Wirkungsgrad von Speichern keine wesentliche Rolle spielt.
Es gibt tatsächlich manchmal bereits heute Situationen, in denen der Strompreis an der Strombörse EEX Null oder sogar leicht negativ ist. Wie ist das möglich? Strom ist eine sehr verderbliche Ware, wenn Strom erzeugt wird, der nicht sofort konsumiert wird, dann ist er wertlos. In einer Welt, in der nur konventionelle Kraftwerke, Kohle, Braunkohle etc. im Einsatz sind, wird das Kraftwerk, das die höchsten Brennstoffkosten hat, abgeschaltet, wenn der Bedarf sinkt. Kurzzeitige Schwankungen wurden bisher schon durch Pumpspeicherkraftwerke ausgeglichen.
Inzwischen sind aber 50 GW Leistung aus erneuerbaren Quellen wie Wind und Sonne am Stromnetz und es kann vorkommen, dass man kein weiteres konventionelles Kraftwerk abschalten kann, da Photovoltaikanlagen keinerlei Brennstoffe benötigen, liegen deren Grenzkosten praktisch bei Null!
Bisher ist das aber erst an sehr wenigen Stunden im Jahr aufgetreten, mithin waren die Mengen unbedeutend.
Daher die Mär vom kostenlosen Strom. Allerdings unterschätzt diese Überlegung, wie schnell der Markt reagiert, wenn es ein kostenloses Gut auf dem Markt gibt. 

Ein neuer Markt

Sehr schnell werden sich Käufer finden, die sehr günstigen Strom abnehmen. Am einfachsten ist eine alte Lösung, die noch aus den Zeiten der Atomkraftwerke stammt und den schönen Namen "Speicherheizung" trägt. Immer wenn der Strom billig war, das war früher in der Nacht, schalteten sich die Speicherheizungen automatisch an und simple Heizdrähte haben einen Ziegelstein im Wohnzimmer aufgeheizt. Der Ziegelstein war natürlich mit Asbest isoliert und "hübsch" mit Blech verkleidet.
Diese Lösung könnte sofort wieder aufleben, etwas moderner vielleicht, indem das Wasser der Zentralheizung bei günstigen Strom elektrisch erwärmt wird. Und sofort bildet sich am Markt wieder ein Strompreis der sicherlich niedrig ist, aber nur so niedrig, dass es sich gerade nicht lohnt mit Erdgas das Warmwasser zu erzeugen. Ich schätze auf etwa 3ct/kWh.

Echte Stromspeicher

Sicherlich gibt es nicht genügend Wasser, das man auf diese Weise erwärmen kann, aber einige hundert GWh können damit vom Markt an einem sonnigen Tag aufgenommen werden. Der nächste Schritt ist, dass echte Stromspeicher auf den Markt kommen, Pumpspeicherkraftwerke, Batterien, Druckluftspeicher, Umwandlung in Wasserstoff/Erdgas, und natürlich der Lageenergiespeicher
In dieser Situation des Wettbewerbs, ist es nicht nur wichtig, dass man billig den Strom einkauft, der dann vielleicht 3ct/kWh kostet, sondern dass man ihn auch gewinnbringend verkaufen kann. Und genau an dieser Stelle kommt der Wirkungsgrad von Speichern ins Spiel.

Wirkungsgrad

Der Wirkungsgrad beschreibt, wie viel Strom ich liefern kann, wenn ich 100 kWh eingespeichert habe. Ein idealer Speicher mit 100% Wirkungsgrad könnte wieder 100 kWh liefern. Ein Pumpspeicherkraftwerk (Oder auch der Lageenergiespeicher) hat etwa 80% Wirkungsgrad und liefert daher nur noch 80 kWh Strom. Hat es den Strom für 3ct pro kWh gekauft, hat die eingelagerte Strommenge von 100 kWh drei Euro gekostet. Um beim Verkauf wieder drei Euro zu erhalten, muss der Strompreis mindestens 3/80 € = 3,75 ct pro kWh betragen. Das ist nur eine kleine Preiserhöhung und diese hat man oft auf dem Markt. daher sind auch heute Pumpspeicher ökonomisch zu betreiben.
Schlechter sieht es für einen Druckluftspeicher mit 40% Wirkungsgrad aus, hier muss der Preis schon auf 3/40 =  7,5 ct/kWh ansteigen. Das kommt heute noch selten vor, wird aber in einer Welt mit hohem Anteil an Strom aus Sonne und Wind möglich. Eine Umwandlung in Methan und Rückumwandlung in Strom liegt mit einem Wirkungsgrad von 25% noch schlechter, hier muss der Preis auf 3/25=12ct/kWh steigen, damit zumindest die Stromeinkaufskosten wieder hereinkommen. 
Und an dieser Stelle kommen die Marktmechanismen zum tragen. Der Stromspeicher, der am günstigsten den Strom wieder anbieten kann, der wird als erstes verkaufen. Damit wird aber ein Geschäftsmodell für Betreiber von Systemen mit geringem Wirkungsgrad immer schlechter darstellbar.

There is no free lunch

Und ähnlich wie der alte Spruch "there is no free lunch" in der Wirtschaft gilt, so gilt auch in Zukunft, es wird keinen kostenlosen Strom geben, wenn es einen funktionierenden Markt gibt. Es sollte aber angemerkt werden, dass es im Bereich der Energieerzeugung und insbesondere im Strommarkt eher keinen gut funktionierenden Markt gibt. Oder haben Sie schon mal für 3ct/kWh Strom von ihrem Elektrizitätshändler geliefert bekommen?

Eine genaue Analyse der Wirtschaftlichkeit von Energiespeichern habe ich in einem weiterem Blogbeitrag durchgeführt.
Dem Thema Kapazitätsmärkte ist Auch ein Beitrag gewidmet. Mehr zu den Stromsteuern

Freitag, 22. Juni 2012

2. VDI-Speicherkonferenz


Am 20 und 21. Juni 2012 fand in Karlsruhe die 2. deutsche VDI Speicherkonferenz statt. Geleitet wurde sie von Professor Dr.  Michael Sterner aus Regensburg. Die zentralen Themen waren Power to Gas (P2G), wie unter dem Vorsitzenden kaum anders zu erwarten, da er beim Fraunhoferinstitut IWES die entsprechenden Technologien angestoßen hat. Daneben ging es um andere neue physikalische Speichersysteme und dabei natürlich um den Lageenergiespeicher (PDF, Folien mit SoundtrackMP3) der auf großes Interesse gestoßen ist, mein Vortrag wurde von Sterner in der Abschlussrede als erfrischend, querdenkerisch aber auch als sehr wichtige Innovation eingestuft.  

Power to Gas

Power to Gas  ist das Verfahren, bei dem man mit überschüssigen Solarstrom oder Windstrom Wasserstoff erzeugt wird und danach mit CO2 dieser Wasserstoff in einer chemischen (oder auch biologischen!) Reaktion in Methan umgewandelt wird. Methan kann man natürlich hervorragend in das Erdgasnetz einspeisen. Leider ist der Wirkungsgrad nur 60%, so dass es keinerlei wirtschaftlichen Vorteil gegenüber natürlichem Methan gibt. Dieses Verfahren ist also als Stromspeicherverfahren nicht sinnvoll, allerdings ist es für die Autoindustrie von Interesse. So wurde von Audi das Thema aufgenommen und eine erste Produktionsanlage wird in Norddeutschland direkt neben einer Biogasanlage aufgestellt, da dort das notwendige (ökologische) CO2 anfällt. Methan kann bekanntlich auch als Autogas verwendet werden und gibt er Automobilindustrie mit Verbrennungsmotor eine interessante Alternative nach dem Ölzeitalter. Bemerkenswerterweise ist die CO2 Bilanz exakt gleich wie beim Elektroauto, so dass es wirklich sinnvoll sein kann Methan zu tanken, da die Reichweite heute schon viel besser ist.

Synthetisches Öl aus Solarenergie

Interessanterweise ist auch die vollständig synthetische Herstellung von Benzin oder Diesel aus Solarenergie wirtschaftlich. Die Herstellungskosten pro Liter liegen bei einer Vollkostenrechnung unter einem Euro und ab einem Ölpreis von etwa 120€ pro Barrel werden wir synthetisches Öl sehen. Insbesondere für die Luftfahrt ein zentraler Punkt, da ein A380 als Batterieflugzeug wohl nie kommen wird.

Druckluftspeicher

Das seit über vierzig Jahren bekannte Verfahren, Strom in Form von Druckluft in Salzkavernen zu speichern ist kaum verbessert worden und leidet weiterhin unter dem schlechten Wirkungsgrad von 40-50%. Weltweit gibt es zwei Anlagen, in den letzten zwanzig Jahren wurde keine neue gebaut.

Batterien

Als spezielle Speicherform wurde die Vanadium-Redox-Flow Batterie dargestellt. Dabei werden zwei Ionisierungsstufen von Vanadium in zwei Tanks gespeichert. Bei Strombedarf werden die elektrolytischen Flüssigkeiten in eine Kammer gepumpt in der sie durch eine Membrane getrennt sind. Es entsteht ein elektrisches Potential und dieses kann genutzt werden. Dabei wurde ein fertiges System gezeigt, das in zwei Containern, ein Tankcontainer, ein Reaktionscontainer, 400kWh speichern kann. Es wird von Gildemeister wohl gut nach Indien verkauft, wo lokal Solarenergie erzeugt wird und bei dem notorisch schwachen Stromnetz eine zuverlässige Energieversorgung möglich wird.

Die Tagung hat viele interessante Vorträge geliefert, allerdings haben alle Teilnehmer unter dem überfüllten Raum und der schlechten Klimatisierung gelitten. Mit Sicherheit war das nicht die letzte Speicherkonferenz des VDI, da das Thema zunehmend wichtiger wird.

Weitere Berichte von Energiespeicher Konferenzen: