Weitere Blogs von Eduard Heindl

Innovationsblog neue Ideen | Some Science my research | Energiespeicher Bedeutung und Zukunft | Energy Age the big picture (engl.)

Mittwoch, 8. August 2012

Kostenloser Strom

Gibt es kostenlosen Strom?

Bei der Diskussion um den Einsatz von Energiespeicher lese ich häufig, dass es in Zukunft kostenlosen Strom gibt und daher der Wirkungsgrad von Speichern keine wesentliche Rolle spielt.
Es gibt tatsächlich manchmal bereits heute Situationen, in denen der Strompreis an der Strombörse EEX Null oder sogar leicht negativ ist. Wie ist das möglich? Strom ist eine sehr verderbliche Ware, wenn Strom erzeugt wird, der nicht sofort konsumiert wird, dann ist er wertlos. In einer Welt, in der nur konventionelle Kraftwerke, Kohle, Braunkohle etc. im Einsatz sind, wird das Kraftwerk, das die höchsten Brennstoffkosten hat, abgeschaltet, wenn der Bedarf sinkt. Kurzzeitige Schwankungen wurden bisher schon durch Pumpspeicherkraftwerke ausgeglichen.
Inzwischen sind aber 50 GW Leistung aus erneuerbaren Quellen wie Wind und Sonne am Stromnetz und es kann vorkommen, dass man kein weiteres konventionelles Kraftwerk abschalten kann, da Photovoltaikanlagen keinerlei Brennstoffe benötigen, liegen deren Grenzkosten praktisch bei Null!
Bisher ist das aber erst an sehr wenigen Stunden im Jahr aufgetreten, mithin waren die Mengen unbedeutend.
Daher die Mär vom kostenlosen Strom. Allerdings unterschätzt diese Überlegung, wie schnell der Markt reagiert, wenn es ein kostenloses Gut auf dem Markt gibt. 

Ein neuer Markt

Sehr schnell werden sich Käufer finden, die sehr günstigen Strom abnehmen. Am einfachsten ist eine alte Lösung, die noch aus den Zeiten der Atomkraftwerke stammt und den schönen Namen "Speicherheizung" trägt. Immer wenn der Strom billig war, das war früher in der Nacht, schalteten sich die Speicherheizungen automatisch an und simple Heizdrähte haben einen Ziegelstein im Wohnzimmer aufgeheizt. Der Ziegelstein war natürlich mit Asbest isoliert und "hübsch" mit Blech verkleidet.
Diese Lösung könnte sofort wieder aufleben, etwas moderner vielleicht, indem das Wasser der Zentralheizung bei günstigen Strom elektrisch erwärmt wird. Und sofort bildet sich am Markt wieder ein Strompreis der sicherlich niedrig ist, aber nur so niedrig, dass es sich gerade nicht lohnt mit Erdgas das Warmwasser zu erzeugen. Ich schätze auf etwa 3ct/kWh.

Echte Stromspeicher

Sicherlich gibt es nicht genügend Wasser, das man auf diese Weise erwärmen kann, aber einige hundert GWh können damit vom Markt an einem sonnigen Tag aufgenommen werden. Der nächste Schritt ist, dass echte Stromspeicher auf den Markt kommen, Pumpspeicherkraftwerke, Batterien, Druckluftspeicher, Umwandlung in Wasserstoff/Erdgas, und natürlich der Lageenergiespeicher
In dieser Situation des Wettbewerbs, ist es nicht nur wichtig, dass man billig den Strom einkauft, der dann vielleicht 3ct/kWh kostet, sondern dass man ihn auch gewinnbringend verkaufen kann. Und genau an dieser Stelle kommt der Wirkungsgrad von Speichern ins Spiel.

Wirkungsgrad

Der Wirkungsgrad beschreibt, wie viel Strom ich liefern kann, wenn ich 100 kWh eingespeichert habe. Ein idealer Speicher mit 100% Wirkungsgrad könnte wieder 100 kWh liefern. Ein Pumpspeicherkraftwerk (Oder auch der Lageenergiespeicher) hat etwa 80% Wirkungsgrad und liefert daher nur noch 80 kWh Strom. Hat es den Strom für 3ct pro kWh gekauft, hat die eingelagerte Strommenge von 100 kWh drei Euro gekostet. Um beim Verkauf wieder drei Euro zu erhalten, muss der Strompreis mindestens 3/80 € = 3,75 ct pro kWh betragen. Das ist nur eine kleine Preiserhöhung und diese hat man oft auf dem Markt. daher sind auch heute Pumpspeicher ökonomisch zu betreiben.
Schlechter sieht es für einen Druckluftspeicher mit 40% Wirkungsgrad aus, hier muss der Preis schon auf 3/40 =  7,5 ct/kWh ansteigen. Das kommt heute noch selten vor, wird aber in einer Welt mit hohem Anteil an Strom aus Sonne und Wind möglich. Eine Umwandlung in Methan und Rückumwandlung in Strom liegt mit einem Wirkungsgrad von 25% noch schlechter, hier muss der Preis auf 3/25=12ct/kWh steigen, damit zumindest die Stromeinkaufskosten wieder hereinkommen. 
Und an dieser Stelle kommen die Marktmechanismen zum tragen. Der Stromspeicher, der am günstigsten den Strom wieder anbieten kann, der wird als erstes verkaufen. Damit wird aber ein Geschäftsmodell für Betreiber von Systemen mit geringem Wirkungsgrad immer schlechter darstellbar.

There is no free lunch

Und ähnlich wie der alte Spruch "there is no free lunch" in der Wirtschaft gilt, so gilt auch in Zukunft, es wird keinen kostenlosen Strom geben, wenn es einen funktionierenden Markt gibt. Es sollte aber angemerkt werden, dass es im Bereich der Energieerzeugung und insbesondere im Strommarkt eher keinen gut funktionierenden Markt gibt. Oder haben Sie schon mal für 3ct/kWh Strom von ihrem Elektrizitätshändler geliefert bekommen?

Eine genaue Analyse der Wirtschaftlichkeit von Energiespeichern habe ich in einem weiterem Blogbeitrag durchgeführt.
Dem Thema Kapazitätsmärkte ist Auch ein Beitrag gewidmet. Mehr zu den Stromsteuern

Sonntag, 22. Juli 2012

Untere Preisschwelle für Solarstrom

Ein Wort vorneweg, die hier kalkulierten Preise für Solarenergie könnten erreicht werden, es sind keine aktuellen Preise die wir in Kürze sehen werden, sondern Grenzwertbetrachtungen.
Betrachtet man die Kostenstruktur für Solarenergie, dann gibt es die Modulpreise, die Gestelle, die Montagekosten und die Transportkosten.

Die Modulpreise sind heute immer noch durch die Siliziumzellen dominiert. Allerdings kann die Firma Firstsolar bereits Silizium-Dünnschichtmodule mit über 14% Wirkungsgrad herstellen. Damit wird auf Dauer der Glaspreis die Module dominieren, da nur minimale Mengen an Silizium aufgedampft werden und die Prozesse extrem optimiert werden können. Der weltweite Markt für Flachglas liegt bei 50 Millionen Tonnen, der Umsatz bei 21 Mrd$. Mithin kostet eine Tonne Flachglas 420$. Damit können 100m² Solarglas gefertigt werden, das etwa 3,2mm dick ist. Ein Quadratmeter Solarmodul, ohne Montage, ab Werk, könnte somit 4,2$/m² kosten

Geringer Wirkungsgrad

Konservativ wird der Wirkungsgrad von SI -Dünnschicht nicht wesentlich über 15% gehen, insbesondere wenn man die Degeneration berücksichtigt. Damit benötigt man 7m² Glasfläche um 1kW_peak zu installieren. Der Preis für das Modul pro kW_peak liegt dann bei 28$/kW_peak, zum Vergleich, dieser Wert liegt heute noch bei 500$/kW_peak, aber es soll die Grenze gefunden werden.
Die Installation erfordert Gestelle aus Stahl und Aluminium, eine grobe Schätzung ist, dass etwa soviel Metall notwendig ist, als für die Solarzellen, also nochmals 28$/kW_peak.
Diese Materialien müssen angeliefert werden, Heute kostet eine Containerfracht 0,05$/kg um die halbe Welt, etwa China-Europa. Danach muss noch vom Hafen zur Baustelle ein LKW fahren, dabei erhöhen sich die Frachtkosten um weitere 19$/kW_peak.
Die Montage besteht im wesentlichen aus dem Einrammen er Pfähle und dem Festschrauben der Module, das sind Vorgänge, die mit geeigneten Maschinen erheblich automatisiert werden können, ich setze sie mit 26$/kW_peak an.

Kostenstruktur für ein kW_peak installierte Leistung:


  • Modulpreis:   28$
  • Gestelle     :   28$
  • Montage   :   25,6$
  • Transport  :   25,6$
  • Summe     : 107,2$

Finanzierung

Das gesamte System muss finanziert werden und dabei soll innerhalb von 10 Jahren das Invest vollständig zurücklaufen, danach entstehen im Unternehmen Reingewinne. Bei guten Standorten, etwa Südspanien oder im Südwesten der USA können 2000kWh/a mit einer Solaranlage mit 1kW Spitzenleistung erzeugt werden. Innerhalb von 10 Jahren somit 20.000kWh.
Da unsere Anlage 107$/kWh_peak kostet, kann der Strom für 0,006$/kWh oder 0,6ct/kWh produziert werden. Das liegt weit unterhalb aller bekannten Stromerzeugungskosten, die bei 5ct/kWh in Kohlekraftwerken liegen!

Nicht berücksichtigte Kosten

Diese Betrachtung hat einige Kosten bewusst ausgespart, da sie nicht direkt in die Stromproduktion einfließen. Der Abtransport des Stroms kann über Leitungen erfolgen, aber möglicherweise steht der Verbraucher, etwa Rechenzentren, Aluminiumhütten, Mineralölkonverter, direkt neben der Anlage, was heute oft bei Flusskraftwerken der Fall ist. Die Wartung wurde nicht berücksichtigt, kann aber sehr klein gehalten werden, heute geht man von 1% der Systemkosten pro Jahr aus, das würde in unserem Fall den Preis um 10% auf 0,0066$/kWh unwesentlich erhöhen.
Die genutzten Flächen sollten vorzugsweise Wüsten sein, bisher sind solche Landflächen extrem billig, da praktisch wertlos. Das könnte sich natürlich in ferner Zukunft, wenn alle Wüsten voll mit Solaranlagen stehen, ändern. 
Sinnvoll wäre natürlich noch ein Speichersystem für diesen extrem günstigen Strom, aber das ist eine andere Geschichte, die ich mit meinem Lageenergiespeicher gerne lösen würde.
Weitere Kosten, wie Wechselrichter, Blitzschutz, Versicherung, Steuern, Bewachung, Rückbau, "Ökoabgabe?" habe ich nicht näher betrachtet. 
Auf jeden Fall sollte damit klar werden, dass ein weiteres Absinken des Preises für Solarstrom möglich, und aufgrund des großen Marktes sogar als sehr wahrscheinlich anzusehen ist!

Freitag, 20. Juli 2012

Ist Solarenergie in Deutschland anders?

Deutschland ist das Land mit dem größtem relativen und absoluten Anteil an Solarenergie im Stromnetz. Die Ursache ist das EEG, so kann man es zumindest allerorten lesen. Interessant ist es aber, einmal der Frage nachzugehen, wie sich das Wachstum der Solarenergie in anderen Ländern entwickelt.
Wachstum der PV-Installationen, Weltweit ohne Deutschland und nur in Deutschland
 (Quelle:  BP, eigene Darstellung)
Vor der Einführung des EEG in Deutschland wuchs die Zahl der PV Installationen sowohl in Deutschland als auch im Rest der Welt um etwa 30% pro Jahr. Nach der Einführung im Jahr 2000 ist die Wachstumsrate in Deutschland sprunghaft auf über 100% angestiegen. In den anderen Ländern war die Wachstumsrate eher unterdurchschnittlich bei 20%. Seit 2010 hat sich das Bild aber umgekehrt, in Deutschland ist das Wachstum, wohlgemerkt nicht der absolute Zubau, auf 40% gefallen. Im Rest der Welt liegt das Wachstum aber inzwischen bei erstaunlichen 80%!
Die Ursache kann man darin suchen, dass durch das EEG die Produktionszahlen massiv angewachsen sind und damit die Preise für PV auf einen Bruchteil des ursprünglichen Wertes gesunken sind, etwa Faktor Fünf.
Damit ist die Solarenergie in vielen sonnenreichen Staaten attraktiv geworden und es kommt zu einem natürlichen Wachstum der Installation von Solarenergie ohne Subventionen.

Dieses Wachstum verursacht einen gewaltigen Speicherbedarf den ich unter "Wann kommt der Speicherbedarf" beschrieben haben.

Freitag, 6. Juli 2012

Firmen für gespeicherte Energie führend


Blickt man auf die Liste der zwanzig umsatzstärksten Unternehmen der Welt, so staunt man. Eigentlich würde man eine bunte Mischung aus Automobil, Internet, Elektronik und Energieunternehmen erwarten. Dies ist aber keineswegs so!
Liste der 20 umsatzstärksten Unternehmen der Welt, Quelle: FAZ

Die 20 führenden Unternehmen erwirtschaften einen Umsatz von etwa 5.000 Milliarden Euro, auf Mineralölfirmen entfallen über 3.000 Milliarden, das sind mehr als 60 Prozent. Nimmt man noch das Erdgasunternehmen Gazprom und den Energieversorger EON hinzu, so hat der Energiemarkt bei den großen Konzernen mit 70% die überragende Bedeutung.

In vielen Branchen benötigt man für das Produzieren eine große Menge Geld und viel Personal, das ist in der Mineralölwirtschaft etwas anders, das Gut, Öl ist praktisch fertig in der Natur vorhanden. Gewiss muss man bohren, transportieren und raffinieren, aber das verursacht nicht die zentralen Kosten, diese sind durch die Endlichkeit des Gutes bestimmt, und das ist gespeicherte Energie in bester Form. 

Ich treffe immer wieder Menschen, die die Bedeutung von Energie unterschätzen und auch unterschätzen, wie viel Umsatz in einem Jahr alleine mit dem Handel von Energie gemacht wird. Das bedeutet aber auch, dass die Welt bereit ist, sehr viel Geld für Energie auszugeben und daher können Energieprobleme auch gelöst werden.

Kosten einer Energiewende

Man bedenke, um die gesamte Welt mit Solarstrom zu versorgen, müssten 20.000 TWh Strom erzeugt werden. Dazu müssen etwa 10 000 000 000 kW Photovoltaik installiert werden, bei heutigen Preisen von 1000 €/kWpeak kostet das etwa den Umsatz von drei Jahren der 13 größten Energieunternehmen. Selbst wenn man die Speicherkosten in gleicher Höhe ansetzt, sieht man, dass eine globale Energiewende sehr wohl im Bereich des wirtschaftlich Machbaren ist.

Insbesondere muss man sich im Klaren sein, dass nach dieser Energiewende praktisch keine weiteren Kosten für Strom auftreten, da die Sonne dann tatsächlich „kostenlos“ liefert. Somit kann man nur mit einem alten Spruch aus der Mineralölwirtschaft sagen: „packen wir‘s an!“

PS. Inzwischen bin ich auf eine Analyse von Hans-Josef Fell gestoßen, der abschätzt, dass weltweit etwa 5.000 Mrd.$ für Energie ausgegeben werden, das liegt in der gleichen Größenordnung.

Siehe auch: Geplante Investitionen in Energiespeicher.

Freitag, 22. Juni 2012

2. VDI-Speicherkonferenz


Am 20 und 21. Juni 2012 fand in Karlsruhe die 2. deutsche VDI Speicherkonferenz statt. Geleitet wurde sie von Professor Dr.  Michael Sterner aus Regensburg. Die zentralen Themen waren Power to Gas (P2G), wie unter dem Vorsitzenden kaum anders zu erwarten, da er beim Fraunhoferinstitut IWES die entsprechenden Technologien angestoßen hat. Daneben ging es um andere neue physikalische Speichersysteme und dabei natürlich um den Lageenergiespeicher (PDF, Folien mit SoundtrackMP3) der auf großes Interesse gestoßen ist, mein Vortrag wurde von Sterner in der Abschlussrede als erfrischend, querdenkerisch aber auch als sehr wichtige Innovation eingestuft.  

Power to Gas

Power to Gas  ist das Verfahren, bei dem man mit überschüssigen Solarstrom oder Windstrom Wasserstoff erzeugt wird und danach mit CO2 dieser Wasserstoff in einer chemischen (oder auch biologischen!) Reaktion in Methan umgewandelt wird. Methan kann man natürlich hervorragend in das Erdgasnetz einspeisen. Leider ist der Wirkungsgrad nur 60%, so dass es keinerlei wirtschaftlichen Vorteil gegenüber natürlichem Methan gibt. Dieses Verfahren ist also als Stromspeicherverfahren nicht sinnvoll, allerdings ist es für die Autoindustrie von Interesse. So wurde von Audi das Thema aufgenommen und eine erste Produktionsanlage wird in Norddeutschland direkt neben einer Biogasanlage aufgestellt, da dort das notwendige (ökologische) CO2 anfällt. Methan kann bekanntlich auch als Autogas verwendet werden und gibt er Automobilindustrie mit Verbrennungsmotor eine interessante Alternative nach dem Ölzeitalter. Bemerkenswerterweise ist die CO2 Bilanz exakt gleich wie beim Elektroauto, so dass es wirklich sinnvoll sein kann Methan zu tanken, da die Reichweite heute schon viel besser ist.

Synthetisches Öl aus Solarenergie

Interessanterweise ist auch die vollständig synthetische Herstellung von Benzin oder Diesel aus Solarenergie wirtschaftlich. Die Herstellungskosten pro Liter liegen bei einer Vollkostenrechnung unter einem Euro und ab einem Ölpreis von etwa 120€ pro Barrel werden wir synthetisches Öl sehen. Insbesondere für die Luftfahrt ein zentraler Punkt, da ein A380 als Batterieflugzeug wohl nie kommen wird.

Druckluftspeicher

Das seit über vierzig Jahren bekannte Verfahren, Strom in Form von Druckluft in Salzkavernen zu speichern ist kaum verbessert worden und leidet weiterhin unter dem schlechten Wirkungsgrad von 40-50%. Weltweit gibt es zwei Anlagen, in den letzten zwanzig Jahren wurde keine neue gebaut.

Batterien

Als spezielle Speicherform wurde die Vanadium-Redox-Flow Batterie dargestellt. Dabei werden zwei Ionisierungsstufen von Vanadium in zwei Tanks gespeichert. Bei Strombedarf werden die elektrolytischen Flüssigkeiten in eine Kammer gepumpt in der sie durch eine Membrane getrennt sind. Es entsteht ein elektrisches Potential und dieses kann genutzt werden. Dabei wurde ein fertiges System gezeigt, das in zwei Containern, ein Tankcontainer, ein Reaktionscontainer, 400kWh speichern kann. Es wird von Gildemeister wohl gut nach Indien verkauft, wo lokal Solarenergie erzeugt wird und bei dem notorisch schwachen Stromnetz eine zuverlässige Energieversorgung möglich wird.

Die Tagung hat viele interessante Vorträge geliefert, allerdings haben alle Teilnehmer unter dem überfüllten Raum und der schlechten Klimatisierung gelitten. Mit Sicherheit war das nicht die letzte Speicherkonferenz des VDI, da das Thema zunehmend wichtiger wird.

Weitere Berichte von Energiespeicher Konferenzen:


Sonntag, 17. Juni 2012

Norwegen die Superbatterie

Die größten Batterien der Welt können etwa 100 MWh (100.000 kWh) speichern. Das ist die Strommenge, die ein durchschnittlicher Deutscher in 12 Jahren verbraucht. Das größte Pumpspeicherkraftwerk in Deutschland, Goldisthal, hat etwa hundertmal mehr Kapazität, 8,4 GWh Strom. Soviel als Vorrede um die Größenordnungen in Erinnerung zu rufen, über die man spricht, wenn es um die Speicherkapazität geht.

Norwegen, eine andere Dimension

Die Speicherseen in Norwegen spielen in einer anderen Liga, die erschlossene Kapazität beträgt 84 TWh, das entspricht ziemlich genau 10.000 mal Goldisthal. Das bedeutet, auch wenn  wir jedes Jahr 100 solche Speicher bauen würden, erst nach hundert Jahren hätten wir die gleiche Speicherkapazität!

Speichersee ist nicht gleich Pumpspeicherkraftwerk

Ein Speichersee ist ein See, der hinter einen Staudamm liegt und Wasser zurückhalten kann. Je mehr es regnet, um so mehr Wasser fliest in den See und der Wasserspiegel steigt. Wird Strom benötigt, öffnet man eine Schleuse und leitet das Wasser über eine Turbine und erzeugt damit Strom. Der See leert sich langsam. Je nach Bauart und Genehmigung kann der Wasserstand um mehrere zehn Meter absinken und später durch Zufluss wieder ansteigen.
In einem Pumpspeicherkraftwerk ist es zusätzlich möglich, durch Pumpen Wasser in den See zu Pumpen, so dass man nicht auf Regen warten muss, um den See wieder zu füllen.

Virtuelle Pumpspeicher

In der Energiediskussion wird häufig gefordert, mehr Pumpspeicher zu bauen, damit überschüssiger Windstrom aus der Nordsee gespeichert werden kann. Da der Bau von solchen Kraftwerken einerseits teuer und andererseits nicht sehr beliebt bei der Bevölkerung ist, sucht man nach Alternativen.
Eine strategische Alternative sind die Speicherseen in Norwegen, auch wenn sie nicht als Pumpspeicher ausgelegt sind. Und das geht so: Wenn bei uns der Wind wieder mal heftig weht und mehr Strom produziert als genutzt werden kann, überträgt man den Strom über Unterwasserleitungen nach Norwegen. Dort wird der Strom von den Norwegern verbraucht, hauptsächlich um die Häuser elektrisch zu heizen. Gleichzeitig schaltet man aber die Turbinen der Speicherseen ab. Damit bleibt das Wasser im Speichersee bis wieder Bedarf entsteht.
Damit hat man einen virtuellen Pumpspeicher, der bis zu 20 GW Leistung aufnehmen kann, so groß ist nämlich im Durchschnitt der Stromverbrauch in Norwegen und Norwegen hat zu 99% eine Stromversorgung, die auf Wasserkraft basiert.

Stromleitungen nach Norwegen

Das einzige finanzielle Problem bei der Nutzung der größten "Batterie" der Welt, den Speicherseen in Norwegen, sind die Leitungen. Eine Leitung von Deutschland nach Norwegen kostet etwa 1000 € pro kW Leistungskapazität. Das ist eine überschaubare Summe, wenn man bedenkt, dass man für jeden Deutschen etwa ein Kilowatt Kapazität benötigt. In der Summe sind die Zahlen natürlich gewaltig, um 20 GW anzuschließen, benötigt man 20 Mrd.€, eine große Summe, die allerdings im Vergleich zu anderen Investitionen im Bereich der erneuerbaren Energien eher gering erscheint, man bedenke, dass das etwa der Betrag ist, der jedes Jahr in den Ausbau der Fotovoltaik geflossen ist.  
Ungleich teurer wären vergleichbare Batterien, diese würden mindestens 100 €/kWh kosten, oder in anderen Worten, um die 84 TWh von Norwegen mit Batterien abzubilden, benötigt man 84.000 Mrd.€. Eine absolut utopische Summe, die das Bruttosozialprodukt der Erde (56.000 Mrd.€) übertrifft!

Das Problem der Politik

Jedem Ingenieur und auch jedem wirtschaftlich denkenden Menschen erschließt sich sofort der Vorteil dieser Superbatterie. Allerdings sollte auch beachtet werden, dass die Anbindung eines anderen Landes an das Stromnetz in einem derartigen Umfang sorgfältiger politischer Abwägung bedarf. Was würde passieren, wen es zu einem Boykott käme, was wenn die Preise willkürlich verändert werden, aus der Abhängigkeit von Öl haben wir da einiges gelernt. Trotzdem wird es in Zukunft sinnvoll sein, diese Speicherkapazität optimal in eine ökologische, nachhaltige Energieversorgung einzubinden.

Mehr zur Problematik von Stromleitungen und Energiespeicher.

Samstag, 16. Juni 2012

Sind Speicher für Strom ökonomisch?


In der aktuellen Diskussion über die Einführung der erneuerbaren Energien ist die Frage der Stromspeicherung völlig ungeklärt. Warum ist es so schwierig, dieses Problem zu quantifizieren und zu lösen.

Bisherige Entwicklung des Speicherbedarfs

Bis vor zehn Jahren war die Stromwelt relativ einfach. Es gab einige riesige thermische Kraftwerke, insbesondere Kernkraftwerke und Braunkohlekraftwerke. Diese lies man immerzu laufen und wenn niemand den Strom benötigt hat, etwa in der Nacht, dann hat man den Strom billig abgegeben. Manche haben damit ihre Nachtspeicherheizung betrieben, andere haben damit die Speicherseen der Pumpspeicherkraftwerke gefüllt.

Am Tag, wenn der Bedarf angestiegen ist, wurden einige Kohlekraftwerke hochgefahren, wenn es eng wurde auch noch einige Gaskraftwerke und die Turbinen bei den Speicherkraftwerken wurden angeworfen. Für dieses Konzept ist unser Leitungsnetz, unsere Speicherkapazität und unser Stromtarif ausgelegt.  

Plötzlich kommt die Sonne ins Spiel

Die Sonne hat bekanntlich die Eigenschaft, dass sie nie nachts scheint. Daher ändert sich zunächst in der Nacht für die Stromversorgung nichts. Anders am Tag, dann scheint die Sonne und Photovoltaikanlagen auf den Dächern der Häuser und Scheunen liefern Strom. Strom wird seltener knapp, da die zusätzliche Stromproduktion im Wesentlichen den zusätzlichen Strombedarf an Tag abdeckt.
Stromverbrauch: Stromquellen: Grau ist konventionell, Grün aus Wind und Gelb aus der  Photovoltaik. (Bildquelle: eex)


Das hat aber zwei fatale Konsequenzen, die Betreiber der Gaskraftwerke müssen ihre Gasturbinen nur noch selten zuschalten. Da diese aber nach geliefertem Strom bezahlt werden, verlieren sie Einnahmen. Gaskraftwerke werden unökonomisch, manche denken schon an das vollständige Abschalten, keiner an den Bau neuer Gaskraftwerke. Ähnlich ergeht es den Speicherkraftwerken. Auch sie werden weniger gebraucht und der Preisunterschied auf dem Strommarkt ist zwischen Tag und Nacht sehr gering, so dass die Betreiber von Pumpspeichern wenig Freude haben und kaum an die Investition in neue Kapazitäten denken.

Wann werden dann die Speicher notwendig?

In der aktuellen Situation sind Speicher nicht notwendig, wie auch der VDE in einerPresserklärung mitgeteilt hat. Erst ab etwa 40% erneuerbare Energien am Netz lohnen sich Speicher. Aktuell sind genau 20% erneuerbare Energien am Netz. Die wirklich schwierige Frage lautet daher, wann werden es 40% sein? Eine sehr simple Betrachtung wäre, in den letzten 20 Jahren sind etwa 15% erneuerbare an das Netz gegangen, dann werden in den nächsten 20 Jahren weitere 15% an das Netz gehen und alle Probleme liegen in weiter Ferne.

Eine genauere Betrachtung ergibt allerdings, dass vor fünf Jahren der Anteil der erneuerbaren Energien nur halb so hoch war. Erwartet man innerhalb der nächsten fünf Jahre eine weitere Verdopplung der erneuerbaren Energien, dann ist bereits vor 2020 ein erhebliches Speicherproblem vorhanden. Und genau da liegt das Prognoseproblem. Man kann für die Prognose zwei verschiedene Annahmen treffen, die erste ist, dass das Wachstum von 15% pro Jahr, das in den letzten zehn Jahren sehr stabil war anhält. Dafür spricht, dass die Preise für Solaranlagen und für Windkraftwerke zurückgehen und damit sich die Investition immer mehr lohnt, auch ohne Subventionen.

Eine alternative Betrachtung geht davon aus, dass durch den politisch gewollten Stopp aller Subventionen der Zubau praktisch zum Stillstand kommt und damit keine Speicherrelevanten Strommengen auf dem Markt auftauchen. In diesem Fall muss am Stromsystem zunächst wenig geändert werden, allerdings ist aktuell kaum erkennbar, dass die Bevölkerung an einem Ausstieg aus den erneuerbaren Energien interessiert ist.

Welche Speicher sind wirtschaftlich?

Wie wirtschaftlich ein Speicher ist, hängt von mehreren Größen ab, erstens, wie teuer die Kapazität von einer kWh Energie ist (SP), wie oft der Speicher pro Jahr gefüllt und entleert wird, das ist die Zahl der Speicherzyklen (Zy). Weiterhin, wie stark der Strompreis schwankt, die sogenannte Volatilität(Vo) und dem minimalen Einkaufspreis (Pmin).  Und nicht zu unterschätzen ist der Wirkungsgrad der Speicher (Wi).
Damit kann man die Einnahmen errechnen, wie lange in Jahre (Ta) es dauert bis der Speicher seine eigenen Kosten erwirtschaftet hat. Die Gleichung lautet:
Ta = SP/((((Pmin+Vo)*Wi)-Pmin)*Zy)

Nimmt man eine Bleibatterie (70% Wirkungsgrad) mit einem Speicherpreis von SP=150€, geht von einem minimalen Strompreis von 0,02€/kWh aus und hofft auf eine Volatilität von 0,10€/kWh, mit Tageszyklen Zy=365 pro Jahr, der bei einer Photovoltaikanlage möglich erscheint, so erhält man:
Ta = 150 € / ( ( ( (0,02 €/kWh + 0,10 €/kWh ) * 0,7 ) - 0,02 €/kWh ) * 365 )
Ta = 6,4 Jahre

Die Rückzahlzeit für Speicher hängt sowohl von der Volatilität auf dem Markt als auch vom Wirkungsgrad ab. (Zum Vergrößern anklicken)

Nach gut sechs Jahren ist die Investition in die Bleibatterie zurückgelaufen, allerdings ohne Berücksichtigung von Zinsen. Allerdings gibt es ein viel größeres Problem, die Bleibatterie ist nach etwa 1000 Ladezyklen so geschwächt, dass sie nicht mehr die gewünschte Leistung bringt und ausgetauscht werden muss, somit erreicht dieses System nie die Wirtschaftlichkeit unter den beschriebenen Annahmen.
Rücklaufzeit, zum Vergrößern anklicken
Rücklaufzeit einer Investition in Stromspeicher bei einem unteren Preis von  0,02€/kWh und mit 365 Zyklen im Jahr. (Zum Vergrößern anklicken)


Erst wenn der Speicherpreis auf deutlich unter 100€/kWh sinkt und die Lebensdauer weit über 3000 Zyklen liegt, werden Speicher wirtschaftlich. Unklar ist, mit welcher Technologie dies erreicht werden kann, aber vermutlich sind Pumpspeicherkraftwerke gute Kandidaten, da diese bereits heute wirtschaftlich arbeiten. Für Batterien, die auf teuren Rohstoffen basieren ist es nur in Ausnahmefällen ökonomisch sinnvoll diese für die stationäre Stromspeicherung einzusetzen. Für mobile Anwendungen, wie Fahrräder und Autos ist die Situation natürlich völlig anders.