Weitere Blogs von Eduard Heindl

Innovationsblog neue Ideen | Some Science my research | Energiespeicher Bedeutung und Zukunft | Energy Age the big picture (engl.)

Freitag, 6. Juli 2012

Firmen für gespeicherte Energie führend


Blickt man auf die Liste der zwanzig umsatzstärksten Unternehmen der Welt, so staunt man. Eigentlich würde man eine bunte Mischung aus Automobil, Internet, Elektronik und Energieunternehmen erwarten. Dies ist aber keineswegs so!
Liste der 20 umsatzstärksten Unternehmen der Welt, Quelle: FAZ

Die 20 führenden Unternehmen erwirtschaften einen Umsatz von etwa 5.000 Milliarden Euro, auf Mineralölfirmen entfallen über 3.000 Milliarden, das sind mehr als 60 Prozent. Nimmt man noch das Erdgasunternehmen Gazprom und den Energieversorger EON hinzu, so hat der Energiemarkt bei den großen Konzernen mit 70% die überragende Bedeutung.

In vielen Branchen benötigt man für das Produzieren eine große Menge Geld und viel Personal, das ist in der Mineralölwirtschaft etwas anders, das Gut, Öl ist praktisch fertig in der Natur vorhanden. Gewiss muss man bohren, transportieren und raffinieren, aber das verursacht nicht die zentralen Kosten, diese sind durch die Endlichkeit des Gutes bestimmt, und das ist gespeicherte Energie in bester Form. 

Ich treffe immer wieder Menschen, die die Bedeutung von Energie unterschätzen und auch unterschätzen, wie viel Umsatz in einem Jahr alleine mit dem Handel von Energie gemacht wird. Das bedeutet aber auch, dass die Welt bereit ist, sehr viel Geld für Energie auszugeben und daher können Energieprobleme auch gelöst werden.

Kosten einer Energiewende

Man bedenke, um die gesamte Welt mit Solarstrom zu versorgen, müssten 20.000 TWh Strom erzeugt werden. Dazu müssen etwa 10 000 000 000 kW Photovoltaik installiert werden, bei heutigen Preisen von 1000 €/kWpeak kostet das etwa den Umsatz von drei Jahren der 13 größten Energieunternehmen. Selbst wenn man die Speicherkosten in gleicher Höhe ansetzt, sieht man, dass eine globale Energiewende sehr wohl im Bereich des wirtschaftlich Machbaren ist.

Insbesondere muss man sich im Klaren sein, dass nach dieser Energiewende praktisch keine weiteren Kosten für Strom auftreten, da die Sonne dann tatsächlich „kostenlos“ liefert. Somit kann man nur mit einem alten Spruch aus der Mineralölwirtschaft sagen: „packen wir‘s an!“

PS. Inzwischen bin ich auf eine Analyse von Hans-Josef Fell gestoßen, der abschätzt, dass weltweit etwa 5.000 Mrd.$ für Energie ausgegeben werden, das liegt in der gleichen Größenordnung.

Siehe auch: Geplante Investitionen in Energiespeicher.

Freitag, 22. Juni 2012

2. VDI-Speicherkonferenz


Am 20 und 21. Juni 2012 fand in Karlsruhe die 2. deutsche VDI Speicherkonferenz statt. Geleitet wurde sie von Professor Dr.  Michael Sterner aus Regensburg. Die zentralen Themen waren Power to Gas (P2G), wie unter dem Vorsitzenden kaum anders zu erwarten, da er beim Fraunhoferinstitut IWES die entsprechenden Technologien angestoßen hat. Daneben ging es um andere neue physikalische Speichersysteme und dabei natürlich um den Lageenergiespeicher (PDF, Folien mit SoundtrackMP3) der auf großes Interesse gestoßen ist, mein Vortrag wurde von Sterner in der Abschlussrede als erfrischend, querdenkerisch aber auch als sehr wichtige Innovation eingestuft.  

Power to Gas

Power to Gas  ist das Verfahren, bei dem man mit überschüssigen Solarstrom oder Windstrom Wasserstoff erzeugt wird und danach mit CO2 dieser Wasserstoff in einer chemischen (oder auch biologischen!) Reaktion in Methan umgewandelt wird. Methan kann man natürlich hervorragend in das Erdgasnetz einspeisen. Leider ist der Wirkungsgrad nur 60%, so dass es keinerlei wirtschaftlichen Vorteil gegenüber natürlichem Methan gibt. Dieses Verfahren ist also als Stromspeicherverfahren nicht sinnvoll, allerdings ist es für die Autoindustrie von Interesse. So wurde von Audi das Thema aufgenommen und eine erste Produktionsanlage wird in Norddeutschland direkt neben einer Biogasanlage aufgestellt, da dort das notwendige (ökologische) CO2 anfällt. Methan kann bekanntlich auch als Autogas verwendet werden und gibt er Automobilindustrie mit Verbrennungsmotor eine interessante Alternative nach dem Ölzeitalter. Bemerkenswerterweise ist die CO2 Bilanz exakt gleich wie beim Elektroauto, so dass es wirklich sinnvoll sein kann Methan zu tanken, da die Reichweite heute schon viel besser ist.

Synthetisches Öl aus Solarenergie

Interessanterweise ist auch die vollständig synthetische Herstellung von Benzin oder Diesel aus Solarenergie wirtschaftlich. Die Herstellungskosten pro Liter liegen bei einer Vollkostenrechnung unter einem Euro und ab einem Ölpreis von etwa 120€ pro Barrel werden wir synthetisches Öl sehen. Insbesondere für die Luftfahrt ein zentraler Punkt, da ein A380 als Batterieflugzeug wohl nie kommen wird.

Druckluftspeicher

Das seit über vierzig Jahren bekannte Verfahren, Strom in Form von Druckluft in Salzkavernen zu speichern ist kaum verbessert worden und leidet weiterhin unter dem schlechten Wirkungsgrad von 40-50%. Weltweit gibt es zwei Anlagen, in den letzten zwanzig Jahren wurde keine neue gebaut.

Batterien

Als spezielle Speicherform wurde die Vanadium-Redox-Flow Batterie dargestellt. Dabei werden zwei Ionisierungsstufen von Vanadium in zwei Tanks gespeichert. Bei Strombedarf werden die elektrolytischen Flüssigkeiten in eine Kammer gepumpt in der sie durch eine Membrane getrennt sind. Es entsteht ein elektrisches Potential und dieses kann genutzt werden. Dabei wurde ein fertiges System gezeigt, das in zwei Containern, ein Tankcontainer, ein Reaktionscontainer, 400kWh speichern kann. Es wird von Gildemeister wohl gut nach Indien verkauft, wo lokal Solarenergie erzeugt wird und bei dem notorisch schwachen Stromnetz eine zuverlässige Energieversorgung möglich wird.

Die Tagung hat viele interessante Vorträge geliefert, allerdings haben alle Teilnehmer unter dem überfüllten Raum und der schlechten Klimatisierung gelitten. Mit Sicherheit war das nicht die letzte Speicherkonferenz des VDI, da das Thema zunehmend wichtiger wird.

Weitere Berichte von Energiespeicher Konferenzen:


Sonntag, 17. Juni 2012

Norwegen die Superbatterie

Die größten Batterien der Welt können etwa 100 MWh (100.000 kWh) speichern. Das ist die Strommenge, die ein durchschnittlicher Deutscher in 12 Jahren verbraucht. Das größte Pumpspeicherkraftwerk in Deutschland, Goldisthal, hat etwa hundertmal mehr Kapazität, 8,4 GWh Strom. Soviel als Vorrede um die Größenordnungen in Erinnerung zu rufen, über die man spricht, wenn es um die Speicherkapazität geht.

Norwegen, eine andere Dimension

Die Speicherseen in Norwegen spielen in einer anderen Liga, die erschlossene Kapazität beträgt 84 TWh, das entspricht ziemlich genau 10.000 mal Goldisthal. Das bedeutet, auch wenn  wir jedes Jahr 100 solche Speicher bauen würden, erst nach hundert Jahren hätten wir die gleiche Speicherkapazität!

Speichersee ist nicht gleich Pumpspeicherkraftwerk

Ein Speichersee ist ein See, der hinter einen Staudamm liegt und Wasser zurückhalten kann. Je mehr es regnet, um so mehr Wasser fliest in den See und der Wasserspiegel steigt. Wird Strom benötigt, öffnet man eine Schleuse und leitet das Wasser über eine Turbine und erzeugt damit Strom. Der See leert sich langsam. Je nach Bauart und Genehmigung kann der Wasserstand um mehrere zehn Meter absinken und später durch Zufluss wieder ansteigen.
In einem Pumpspeicherkraftwerk ist es zusätzlich möglich, durch Pumpen Wasser in den See zu Pumpen, so dass man nicht auf Regen warten muss, um den See wieder zu füllen.

Virtuelle Pumpspeicher

In der Energiediskussion wird häufig gefordert, mehr Pumpspeicher zu bauen, damit überschüssiger Windstrom aus der Nordsee gespeichert werden kann. Da der Bau von solchen Kraftwerken einerseits teuer und andererseits nicht sehr beliebt bei der Bevölkerung ist, sucht man nach Alternativen.
Eine strategische Alternative sind die Speicherseen in Norwegen, auch wenn sie nicht als Pumpspeicher ausgelegt sind. Und das geht so: Wenn bei uns der Wind wieder mal heftig weht und mehr Strom produziert als genutzt werden kann, überträgt man den Strom über Unterwasserleitungen nach Norwegen. Dort wird der Strom von den Norwegern verbraucht, hauptsächlich um die Häuser elektrisch zu heizen. Gleichzeitig schaltet man aber die Turbinen der Speicherseen ab. Damit bleibt das Wasser im Speichersee bis wieder Bedarf entsteht.
Damit hat man einen virtuellen Pumpspeicher, der bis zu 20 GW Leistung aufnehmen kann, so groß ist nämlich im Durchschnitt der Stromverbrauch in Norwegen und Norwegen hat zu 99% eine Stromversorgung, die auf Wasserkraft basiert.

Stromleitungen nach Norwegen

Das einzige finanzielle Problem bei der Nutzung der größten "Batterie" der Welt, den Speicherseen in Norwegen, sind die Leitungen. Eine Leitung von Deutschland nach Norwegen kostet etwa 1000 € pro kW Leistungskapazität. Das ist eine überschaubare Summe, wenn man bedenkt, dass man für jeden Deutschen etwa ein Kilowatt Kapazität benötigt. In der Summe sind die Zahlen natürlich gewaltig, um 20 GW anzuschließen, benötigt man 20 Mrd.€, eine große Summe, die allerdings im Vergleich zu anderen Investitionen im Bereich der erneuerbaren Energien eher gering erscheint, man bedenke, dass das etwa der Betrag ist, der jedes Jahr in den Ausbau der Fotovoltaik geflossen ist.  
Ungleich teurer wären vergleichbare Batterien, diese würden mindestens 100 €/kWh kosten, oder in anderen Worten, um die 84 TWh von Norwegen mit Batterien abzubilden, benötigt man 84.000 Mrd.€. Eine absolut utopische Summe, die das Bruttosozialprodukt der Erde (56.000 Mrd.€) übertrifft!

Das Problem der Politik

Jedem Ingenieur und auch jedem wirtschaftlich denkenden Menschen erschließt sich sofort der Vorteil dieser Superbatterie. Allerdings sollte auch beachtet werden, dass die Anbindung eines anderen Landes an das Stromnetz in einem derartigen Umfang sorgfältiger politischer Abwägung bedarf. Was würde passieren, wen es zu einem Boykott käme, was wenn die Preise willkürlich verändert werden, aus der Abhängigkeit von Öl haben wir da einiges gelernt. Trotzdem wird es in Zukunft sinnvoll sein, diese Speicherkapazität optimal in eine ökologische, nachhaltige Energieversorgung einzubinden.

Mehr zur Problematik von Stromleitungen und Energiespeicher.

Samstag, 16. Juni 2012

Sind Speicher für Strom ökonomisch?


In der aktuellen Diskussion über die Einführung der erneuerbaren Energien ist die Frage der Stromspeicherung völlig ungeklärt. Warum ist es so schwierig, dieses Problem zu quantifizieren und zu lösen.

Bisherige Entwicklung des Speicherbedarfs

Bis vor zehn Jahren war die Stromwelt relativ einfach. Es gab einige riesige thermische Kraftwerke, insbesondere Kernkraftwerke und Braunkohlekraftwerke. Diese lies man immerzu laufen und wenn niemand den Strom benötigt hat, etwa in der Nacht, dann hat man den Strom billig abgegeben. Manche haben damit ihre Nachtspeicherheizung betrieben, andere haben damit die Speicherseen der Pumpspeicherkraftwerke gefüllt.

Am Tag, wenn der Bedarf angestiegen ist, wurden einige Kohlekraftwerke hochgefahren, wenn es eng wurde auch noch einige Gaskraftwerke und die Turbinen bei den Speicherkraftwerken wurden angeworfen. Für dieses Konzept ist unser Leitungsnetz, unsere Speicherkapazität und unser Stromtarif ausgelegt.  

Plötzlich kommt die Sonne ins Spiel

Die Sonne hat bekanntlich die Eigenschaft, dass sie nie nachts scheint. Daher ändert sich zunächst in der Nacht für die Stromversorgung nichts. Anders am Tag, dann scheint die Sonne und Photovoltaikanlagen auf den Dächern der Häuser und Scheunen liefern Strom. Strom wird seltener knapp, da die zusätzliche Stromproduktion im Wesentlichen den zusätzlichen Strombedarf an Tag abdeckt.
Stromverbrauch: Stromquellen: Grau ist konventionell, Grün aus Wind und Gelb aus der  Photovoltaik. (Bildquelle: eex)


Das hat aber zwei fatale Konsequenzen, die Betreiber der Gaskraftwerke müssen ihre Gasturbinen nur noch selten zuschalten. Da diese aber nach geliefertem Strom bezahlt werden, verlieren sie Einnahmen. Gaskraftwerke werden unökonomisch, manche denken schon an das vollständige Abschalten, keiner an den Bau neuer Gaskraftwerke. Ähnlich ergeht es den Speicherkraftwerken. Auch sie werden weniger gebraucht und der Preisunterschied auf dem Strommarkt ist zwischen Tag und Nacht sehr gering, so dass die Betreiber von Pumpspeichern wenig Freude haben und kaum an die Investition in neue Kapazitäten denken.

Wann werden dann die Speicher notwendig?

In der aktuellen Situation sind Speicher nicht notwendig, wie auch der VDE in einerPresserklärung mitgeteilt hat. Erst ab etwa 40% erneuerbare Energien am Netz lohnen sich Speicher. Aktuell sind genau 20% erneuerbare Energien am Netz. Die wirklich schwierige Frage lautet daher, wann werden es 40% sein? Eine sehr simple Betrachtung wäre, in den letzten 20 Jahren sind etwa 15% erneuerbare an das Netz gegangen, dann werden in den nächsten 20 Jahren weitere 15% an das Netz gehen und alle Probleme liegen in weiter Ferne.

Eine genauere Betrachtung ergibt allerdings, dass vor fünf Jahren der Anteil der erneuerbaren Energien nur halb so hoch war. Erwartet man innerhalb der nächsten fünf Jahre eine weitere Verdopplung der erneuerbaren Energien, dann ist bereits vor 2020 ein erhebliches Speicherproblem vorhanden. Und genau da liegt das Prognoseproblem. Man kann für die Prognose zwei verschiedene Annahmen treffen, die erste ist, dass das Wachstum von 15% pro Jahr, das in den letzten zehn Jahren sehr stabil war anhält. Dafür spricht, dass die Preise für Solaranlagen und für Windkraftwerke zurückgehen und damit sich die Investition immer mehr lohnt, auch ohne Subventionen.

Eine alternative Betrachtung geht davon aus, dass durch den politisch gewollten Stopp aller Subventionen der Zubau praktisch zum Stillstand kommt und damit keine Speicherrelevanten Strommengen auf dem Markt auftauchen. In diesem Fall muss am Stromsystem zunächst wenig geändert werden, allerdings ist aktuell kaum erkennbar, dass die Bevölkerung an einem Ausstieg aus den erneuerbaren Energien interessiert ist.

Welche Speicher sind wirtschaftlich?

Wie wirtschaftlich ein Speicher ist, hängt von mehreren Größen ab, erstens, wie teuer die Kapazität von einer kWh Energie ist (SP), wie oft der Speicher pro Jahr gefüllt und entleert wird, das ist die Zahl der Speicherzyklen (Zy). Weiterhin, wie stark der Strompreis schwankt, die sogenannte Volatilität(Vo) und dem minimalen Einkaufspreis (Pmin).  Und nicht zu unterschätzen ist der Wirkungsgrad der Speicher (Wi).
Damit kann man die Einnahmen errechnen, wie lange in Jahre (Ta) es dauert bis der Speicher seine eigenen Kosten erwirtschaftet hat. Die Gleichung lautet:
Ta = SP/((((Pmin+Vo)*Wi)-Pmin)*Zy)

Nimmt man eine Bleibatterie (70% Wirkungsgrad) mit einem Speicherpreis von SP=150€, geht von einem minimalen Strompreis von 0,02€/kWh aus und hofft auf eine Volatilität von 0,10€/kWh, mit Tageszyklen Zy=365 pro Jahr, der bei einer Photovoltaikanlage möglich erscheint, so erhält man:
Ta = 150 € / ( ( ( (0,02 €/kWh + 0,10 €/kWh ) * 0,7 ) - 0,02 €/kWh ) * 365 )
Ta = 6,4 Jahre

Die Rückzahlzeit für Speicher hängt sowohl von der Volatilität auf dem Markt als auch vom Wirkungsgrad ab. (Zum Vergrößern anklicken)

Nach gut sechs Jahren ist die Investition in die Bleibatterie zurückgelaufen, allerdings ohne Berücksichtigung von Zinsen. Allerdings gibt es ein viel größeres Problem, die Bleibatterie ist nach etwa 1000 Ladezyklen so geschwächt, dass sie nicht mehr die gewünschte Leistung bringt und ausgetauscht werden muss, somit erreicht dieses System nie die Wirtschaftlichkeit unter den beschriebenen Annahmen.
Rücklaufzeit, zum Vergrößern anklicken
Rücklaufzeit einer Investition in Stromspeicher bei einem unteren Preis von  0,02€/kWh und mit 365 Zyklen im Jahr. (Zum Vergrößern anklicken)


Erst wenn der Speicherpreis auf deutlich unter 100€/kWh sinkt und die Lebensdauer weit über 3000 Zyklen liegt, werden Speicher wirtschaftlich. Unklar ist, mit welcher Technologie dies erreicht werden kann, aber vermutlich sind Pumpspeicherkraftwerke gute Kandidaten, da diese bereits heute wirtschaftlich arbeiten. Für Batterien, die auf teuren Rohstoffen basieren ist es nur in Ausnahmefällen ökonomisch sinnvoll diese für die stationäre Stromspeicherung einzusetzen. Für mobile Anwendungen, wie Fahrräder und Autos ist die Situation natürlich völlig anders.




Donnerstag, 24. Mai 2012

Energiespeicher Schwerkraft

Immer wieder werde ich gefragt, wieso man nicht einfach schwere Gewichte hochhebt und damit Energie speichert? Prinzipiell kann man sehr wohl Energie durch Anheben von Gewichten speichern.
Pendeluhr mit Gewichten (Bildquelle: Wikipedia)
Besonders bei Uhren ist das Verfahren, Energie durch das Anheben von Gewichten zu speichern weitverbreitet und sinnvoll, da Uhren erstaunlich wenig Energie benötigen. 

Berechnung der Energiemenge

Um die Menge an gespeicherter Energie zu bestimmen, müssen drei Faktoren berücksichtigt werden, die Stärke der Schwerkraft, die Masse des Gewichts und die Höhe um die das Gewicht angehoben wird.
Ein erstes Beispiel soll das verdeutlichen, eine Pendeluhr hat ein Gewicht, das m = 10 kg schwer ist und einen Meter (h = 1m) hochgehoben wird. Die Schwerkraft ist weltweit praktisch immer gleich und mit g = 9,81m/s² anzusetzen. Oder vereinfacht g ~ 10m/s²
Damit bekommt man die gespeicherte Energie:
E = m × g × h
E= 10 kg * 10 m/s² * 1 m 
E = 100 J = 100 Ws 
Die Uhr speichert also 100 Watt Sekunden, oder in anderen Worten ausgedrückt, damit könnte man eine Glühbirne mit 100 Watt genau eine Sekunde antreiben. Nicht besonders viel!

Um die Energiemenge zu erhöhen, kann man die Uhr höher aufhängen, etwa auf einem Kirchturm, der 100 Meter hoch ist. Wenn das Gewicht an einem langen Seil dann 100 Meter aufgezogen wird, speichert es 10.000 Ws, damit kann man die Glühbirne bereits 100 Sekunden aufleuchten lassen. 

Ein Turm mit Gewicht

Ein noch höherer Turm ist sicher keine gute Lösung, daher versuchen wir das Gewicht zu vergrößern. Wenn man statt 10 kg einen Felsblock mit 3600 kg anhebt, hat man 3.600.000 Ws gespeichert! Das ist schon eine Menge und es lohnt sich, dies in der üblichen Einheit Kilowattstunden (kWh) anzugeben. Da eine Stunde 3600 Sekunden hat, ergibt das genau eine Kilowattstunde und hat auf dem Strommarkt einen Wert von etwa 0,05€.

Offensichtlich kann man damit kein wirtschaftliches Speichersystem aufbauen, denn auch nach 1000 Zyklen hat man nur 50 Euro eingenommen, muss aber von dem Geld den 100m hohen Turm, den Motor und noch einiges an Zubehör bezahlen.

Ein Güterzug

Ein Ausweg ist, die Masse weiter massiv zu erhöhen, etwa ein großer, amerikanischer Supergüterzug, der 100 Waggons hat und jeder Waggon 100 Tonnen schwer ist. Diesen ziehen wir jetzt 360 m hoch auf die Schwäbische Alb und lassen ihn bei Bedarf wieder herunterrollen. Die Energiemenge ist dabei:
E = 100 × 100 t ×1000 kg/t × 10 m/s² × 360 m
E = 36.000.000.000 Ws
E = 10.000 kWh
Die Energiemenge, die dieser Güterzug speichert, ist erheblich, allerdings auf dem Strommarkt nur 500€ wert. Vielleicht auch ein Hinweis, dass Strom doch immer noch eine sehr günstige Energie ist.  

Will man mit dieser Konstruktion Geld verdienen und fährt den Güterzug jeden Tag bei Sonnenschein mit der Energie aus Fotovoltaikanlagen hoch, so hat man nach 1000 Zyklen immerhin 500.000€ eingenommen. Allerdings besteht kaum die Chance, damit auch nur das notwendige Abstellgleis zu finanzieren, von der Lokomotive und den Waggons ganz zu schweigen.

Einen See hochheben

Der Klassiker für das Speichern von Energie ist das Hochpumpen von Wasser in einen Speichersee. Ein größerer See, wie der Schluchsee, kann immerhin 13 Millionen Tonnen Wasser aufnehmen, dies entspricht bei 500 Meter Höhenunterschied die gewaltige Energiemenge von 18 GWh. Bei einem Strompreis von 0,05€ ist die Energie im See jetzt 900.000€ wert! Nach 1000 Zyklen kann man damit etwa 900 Millionen Euro einnehmen und es ist realistisch, mit so viel Geld ein System dieser Art zu bauen. 

Einen Fels hydraulisch anheben.

Der ultimative Energiespeicher ist ein zylinderförmiger Fels, den man aus seiner Umgebung freilegt, wie es beim Lageenergiespeicher verwirklicht werden soll. Die Felsmasse beträgt etwa 2 Milliarden Tonnen. Hebt man diesen Fels hydraulisch um 500m an, so speichert er etwa 2000GWh, unter Berücksichtigung von Verlusten bei den Turbinen sind es mindestens 1600GWh, das ist ein Wert von 80 Millionen Euro. Würde man theoretisch diesen Berg 1000 mal hochheben, könnte man damit 80 Milliarden Euro einnehmen. Die Frage ist, ob ein derartiges Bauwerk zu diesen Preis realisierbar ist? 

Speicherbau ist schwer

Aus den obigen Beispielen sieht man, dass es schwer ist, mit der Schwerkraft und großen Massen größere Energiemengen zu speichern. Es soll noch angemerkt werden, dass es sich bei der ökonomischen Betrachtung um grobe Überschlagsrechnungen handelt. Die Annahme, dass man 5ct pro kWh erlösen kann, ist auf dem aktuellen Markt realistisch, der Wert könnte aber auch auf das Doppelte ansteigen. Die Annahme von 1000 Arbeitszyklen ist ebenfalls ungenau, würde etwa jeden Tag eingespeichert, dann wäre bereits nach drei Jahren das Kapital zurückgeflossen. Es ist unklar, wie oft in Zukunft überschüssige Energie vorhanden ist, zudem sind Abschreibung, Betriebskosten usw. nicht berücksichtigt.

Hinweis:

Die größten Energiespeicher gibt es in Norwegen, denen ich einen eigenen Beitrag gewidmet habe

Dienstag, 17. April 2012

Wirkungsgrad von Speichern


Mit zunehmendem Ausbau von Wind und Sonne wird es Überschüsse bei der Stromversorgung geben, die zu sehr niedrigen Strompreisen führen. Häufig ist man der Meinung, bei sehr billigem Strom würde der Wirkungsgrad der Speicher nur eine untergeordnete Rolle spielen. Daher soll hier der Zusammenhang zwischen dem Wirkungsgrad eines Speichers und der Wirtschaftlichkeit eines Speichers betrachtet werden.
Strompreisschwankungen an der EEX, mit einem Speicher kann man damit Geld verdienen.

Typische Wirkungsgrade von Stromspeichern

Der perfekte Stromspeicher hat 100% Wirkungsgrad, das bedeutet, eine kWh Strom, die eingespeichert wird, kann man genauso wieder entnehmen. Diesen Wirkungsgrad hat etwa ein Kondensator. Allerdings sind Kondensatoren derart teuer, dass man nur sehr kleine Energiemengen speichern kann und eine weitere Betrachtung dieser Technik keine Bedeutung hat.

Pumpspeicher

Nicht ganz so gut, aber mit dem besten Wirkungsgrad für große Strommengen, sind Pumpspeicherkraftwerke. Damit wird mit einer Pumpe Wasser in einem höher gelegenen See gepumpt und bei Bedarf über eine Turbine wieder Strom erzeugt. Die besten Pumpen erreichen heute einen Wirkungsgrad von 92%, für Turbinen gilt dasselbe. Somit liegt der mögliche Gesamtwirkungsgrad bei 85%. In der Praxis wird dieser Wert selten erreicht, da hohe Wirkungsgrade auch immer mit teuren Maschinen verbunden sind. So findet man in der Praxis meist einen Wirkungsgrad von 80% bei neuen Pumpspeicherkraftwerken und bei älteren manchmal weniger als 70%. (mehr zu Pumpspeicherkraftwerke)

Druckluftspeicher

Komprimiert man Luft und pumpt diese in eine Kaverne, so kann man damit auch Energie speichern. Diese sogenannten (nicht adiabatische) Druckluftspeicher-Speicher brauchen wenig Platz, sind technisch nicht sonderlich anspruchsvoll, erreichen aber nur einen Wirkungsgrad von 40%. Dies liegt an einem lästigen physikalischen Effekt, komprimiert man ein Gas, erwärmt es sich. In der Kaverne kühlt das Gas aber aus und verliert damit wertvolle mechanische Energie, weil damit auch der Druck abfällt.

Methan

Eine Umwandlung von Strom in Wasserstoff und Sauerstoff kann mit einem Wirkungsgrad von 80% erfolgen. Verwandelt man diesen Wasserstoff in Methan, lässt sich dieses Gas in fast beliebiger Menge im Erdgasnetz speichern. Das ist für einen Langzeitspeicher optimal, allerdings ist jetzt nur noch 60% der ursprünglichen elektrischen Energie vorhanden. Leider liegt der Wirkungsgrad bei der Umwandlung von Methan mit einer Gasturbine in Strom bei 50%. Damit liegt der Gesamtwirkungsgrad bei 30% (0,6 × 0,5).
(Mehr zu Erdgasspeicher Power to Gas)

Wirtschaftliche Nutzung eines Speichers.

In der folgenden Rechnung wurden die tatsächlichen Strompreise der EEX-Strombörse in der Zeit vom 19. bis 26. März 2012 verwendet, um optimal mit verschieden guten Speichern Strom günstig einzukaufen und wieder möglichst teuer zu verkaufen. Man sieht deutlich, dass kurz nach Sonnenuntergang der Strom am teuersten ist, weiterhin an manchen Tagen mit viel Wind der Strompreis unter 20 Euro/MWh (2 ct/kWh) liegt.
Einnahmen mit einem Speicher, je nach Wirkungsgrad.

Ist der Wirkungsgrad hoch, etwa 80%, dann kann man bereits geringe Preisschwankungen ausnutzen, da nur ein geringer Verlust im Speicher auftritt. In dem Beispielzeitraum hätte man, auf das Jahr hochgerechnet, 740 Euro mit einer MWh Speicherkapazität verdient. Oder in der bequemen Einheit kWh wären es 0,74€/kWh × a Einnahmen gewesen. Ein normales Pumpspeicherkraftwerk, das 100€/kWh kostet, kann damit nie in die Gewinnzone vordringen. Der Lageenergiespeicher hätte bereits im zweiten Jahr einen Überschuss erwirtschaftet.

Mit einem geringeren Wirkungsgrad, wie dem Druckluftspeicher (40%) wären die Einnahmen noch geringer, 0,36€/kWh*a. Selbst bei einer völlig kostenlosen Kaverne ist hier ein Gewinn aufgrund der Turbinenkosten schwer darstellbar.

Mit der Technik „Power to Gas“, bei der Methan erzeugt wird und daraus wieder Strom erzeugt wird, liegt der Wirkungsgrad bei 30% und die Einnahmen betragen nur 0,20€/kWh × a, damit ist die Finanzierung des Elektrolyseurs, der Methan Chemie und der Gasturbine schwer vorstellbar, selbst wenn der Speicher, das Erdgasnetz, völlig kostenlos genutzt werden können.

Strompreise in der Zukunft

In Zukunft werden die Strompreise wesentlich stärker schwanken, damit ist eine Verdopplung, oder eine noch wesentlich stärkere Erhöhung der Einnahmen leicht vorstellbar. Allerdings werden dabei die einzelnen Speicher weiterhin nur proportional zum Wirkungsgrad hinzugewinnen.

Jedem den es gelingt, Speicher im Preisbereich von 10€/kWh herzustellen, hat damit ausgezeichnete Einnahmemöglichkeiten. Und genau das könnte die große Chance des Lageenergiespeichers werden.
Anmerkung: Die Rechnung nutzt nur die Daten von acht Tagen und ist daher nicht repräsentativ für das ganze Jahr. Aber sie gibt einen ersten Eindruck, wie sich die Einnahmen eines Speichers darstellen. 

Montag, 2. April 2012

Benzin ein teurer Energiespeicher?

Jedes Jahr an Ostern brandet die Diskussion auf, warum ist das Benzin so teuer?
Als erstes sind da natürlich die Mineralölkonzerne schuld, halt, so einfach ist das nicht!
Ölpreis in Dollar pro Barrel ab Rotterdam,
Quelle: http://www.finanzen.net/rohstoffe/oelpreis 
Ich will mal versuchen, sachlich einige Aspekte des Beninpreises darzustellen.

Der Rohölpreis

Der Rohölpreis hat direkten Einfluss auf den Benzinpreis, eine ganz stark vereinfachte Rechnung besagt, aus einem Barrel kann man 150 Liter Benzin gewinnen. Kostet also ein Barrel 125$, was um Ostern 2012 der Fall ist, dann kostet ein Liter 0,83$ oder 0,64€/Liter, bei einem Dollarkurs von 1,30€/$.
Das war vor einem Jahr noch anders, da kostete ein Barrel 110$ und der Euro war noch 1,45€/$ wert. Damit kostete das Benzin im Einkauf 0,51€/Liter, damit ist der Einkaufspreis um über 25% gestiegen.
Warum das so ist, liegt an zwei wichtigen Faktoren, Öl wird immer knapper, zudem benötigt Japan sehr viel Öl, da es seine gesamten Kernkraftwerke abgeschaltet hat. Das andere Problem ist der Euro, aufgrund einer starken Ausweitung der Geldmenge, bekannt unter "Eurorettung" hat der Euro weltweit eine schwächere Kaufkraft.
Wir es eine Änderung beim Rohölpreis geben? Vermutlich wird der Preis nicht mehr längerfristig sinken, da es noch keinen Ersatz für diesen optimalen Energiespeicher gibt. Jeder Liter enthält 10kWh, würde man das in einem Bleiakku abspeichern, benötigt man für einen Liter bereits zehn Akkumulatoren. Es gibt aber eine gewisse Preisgrenze nach oben, da es ab einem Ölpreis von 150$/Barrel ökonomisch ist, aus Kohle Öl herzustellen.

Die Steuern

In Deutschland wird Treibstoff besteuert, merkwürdigerweise nicht nach Energiegehalt, sondern nach Treibstoffsorte. So wird Benzin höher (65ct/l) besteuert, als Diesel (47ct/l) und Erdgas (18ct/l) fast überhaupt nicht. Damit versuchen die Politiker den LKW Verkehr zu stärken, viele LKW finden Politiker gut, Autofahrer haben da manchmal eine andere Meinung. 
Der Grund für diese Steuer ist im Prinzip nachvollziehbar, damit sollen die Straßen finanziert werden. Zusätzlich hat man aber auch eine sogenannte Ökosteuer eingeführt, aus der die Renten finanziert werden sollen. 
Interessanterweise kommt auf diese Steuer und den Benzinpreis noch die Mehrwertsteuer hinzu, diese macht 19% aus, was bei einem Tankstellenpreis von 1,70€/Liter immerhin 27ct/l sind. Die Gesamtsteuer pro Liter beträgt damit 0,92€/Liter.

Die Mineralölkonzerne

Die verbleibenden 0,14€/Liter (1,70€-0,64€-0,92€) teilen sich nun die Mineralölindustrie, der Tankstellenbetreiber und der arme Mitarbeiter, der in der Nacht vom Ostersonntag zum Ostermontag in der Tankstelle stehen muss. Ehrlich gesagt sehe ich da nicht all zuviel Luft für Preissenkungen durch die Tankstellen.

Aber aus irgendeinem Grund wird in den Medien jedesmal auf die Mineralölkonzerne losgegangen. Ich will nicht sagen, dass ich jede Aktion der Konzerne so toll finde, man denke nur an die Ölkatastrophen, aber für den hohen Benzinpreis können sie nichts.

Schuldig am hohem Benzinpreis sind:

  1. Der Staat  (54%)  mit seinen Steuern, aber das sind wir, wir bekommen das Geld wieder zurück, in Form von Rente, Straßen und vielleicht sogar Bildung.
  2. Die Ölknappheit (23%), seit 1972 wird weniger Öl gefunden als verbraucht. Solange wir keine anderen Energiespeicher haben, wird fast jeder Preis gezahlt werden.
  3. Die Europolitiker, durch den Kaufkraftverlust des Euros wird Öl teurer.
  4. An letzter Stelle die, die sich darum kümmern, dass überall immer Benzin verfügbar ist. 
Wie wertvoll ist Energie?
Vielleicht auch interessant: Wie viel Geld mit Öl verdient wird!