Strom mit dem Lageenergiespeicher speichern
Als Erfinder des Konzepts Lageenergiespeicher muss ich natürlich vorwegnehmen, dass ich etwas voreingenommen bin, was die Machbarkeit betrifft. Aber ich werde versuchen, so gut wie möglich, objektiv zu sein.
Arbeitsweise Lageenergiespeicher
Das Prinzip des Lageenergiespeichers |
Im Prinzip ist der Betrieb eines hydraulischen Lageenergiespeichers [1] sehr einfach, ein Felszylinder wird mit elektrisch angetriebenen Pumpen durch den Wasserdruck angehoben, bei Strombedarf wird das Wasser aus der Druckkammer über eine Turbine geleitet und liefert Strom. Dass man entsprechende Pumpen und Turbinen bauen kann, die im Stromnetz ökonomisch arbeiten, ist unbestritten, sonst gäbe es keine Pumpspeicherkraftwerke. In der obigen Abbildung ist dies auf der linken Bildhälfte vereinfacht angedeutet. Dass Pumpspeicherkraftwerke momentan wenig Gewinn abwerfen ist ein anderes Problem, das ich unter "paradoxe Marktsignale" schon diskutiert habe.
Bau des Zylinders
Wesentlich schwieriger ist die rechte Hälfte im Bild zu realisieren, der anhebbare Steinzylinder. Hier geht es zuerst um die Frage, kann man einen solchen Felsen freilegen. Ein einfaches Beispiel ist das künstliche Loch des Höwenegg Vulkans, das, bei recht senkrechten Außenwänden, einem "Lageenergiespeicher" mit 100m Radius recht nahe kommt.
Gesägte Steinwände in Salzburg (Googlemaps) |
Senkrechte Wände kann man auch sägen, das sieht man in jedem Marmorsteinbruch. Originell ist die Situation in Salzburg, dort wurde versucht, einen Teil des Burgbergs abzusägen, trotz des schlechten Nagelfluh-Gesteins steht die senkrechte Wand immer noch sehr gut:
Noch überzeugender sollte aber das folgende Bild vom Kanal von Korinth sein:
Kanal von Korinth (Bildquelle Wikipedia) |
Der Kanal von Korinth besteht aus zwei fast senkrechten Wänden, ähnlich wie beim Lageenergiespeicher, nur sind hier die Wände nicht zu einem Zylinder gerundet.
Geht man davon aus, dass man die Wände frei sägen kann, bleibt bei der Freilegung die Abtrennung des Zylinderbodens ein Problem. Hier könnte eine Maschine zum Einsatz kommen, wie sie im Bergbau oft Verwendung findet, eine Schrämmaschine. Damit werden im Kohleflöz die Kohlen aus dem Berg geholt, aber auch bei vielen anderen Aktivitäten im Bergbau entfernt man damit Gestein.
Schrämmwalze (Bildquelle: Wikipedia) |
Abdichtung
Die Abdichtung des Systems besteht aus zwei Teilproblemen, zum Einem muss man alle Oberflächen die mit Wasser in Berührung kommen, mit einer wasserdichten Folie bekleben. Dies geschieht heute bei Staudämmen regelmäßig mit Geo Membranen (Hintergrundartikel: Geomembrane). Das sind Kunststofffolien, die haltbar mit dem Untergrund verschweißt werden. Bekannte Hersteller geben auf diese Folien sogar 100 Jahre Garantie, da sie hier nicht mit Sonnenlicht in Kontakt kommen, sollte es daher kein Problem mit der Dauerhaftigkeit geben.
Der zweite Teil der Abdichtung bezieht sich auf den Dichtungsring. Dieser muss den Wasserdruck von einigen 10 Bar aufnehmen. Bei einem Speicher mit 125m Radius und 8GWh Kapazität beträgt der Druck an der Dichtung etwa 50 Bar. Damit dieser Druck homogen abgeführt wird, werden mehrere Dichtungsringe mit jeweils 10 Bar Dichtungsdruck verwendet. 10 Bar ist etwa der Druck in jeder Wasserleitung oder in einem Lkw Reifen, nicht sehr ungewöhnlich. Allerdings erfordert eine Dichtung immer eine Wand, an der sie gut entlang laufen kann, hierfür ist es notwendig die entsprechende Außenfläche des Schafts mit blanker Metallfolie zu belegen. Die Form des Dichtungsrings, sehr groß, ist aus dem Tunnelbau bekannt, dort werden ebenfalls Dichtungen eingesetzt, damit ein Wassereinbruch an der Tunnelbohrmaschine abgefangen werden kann.
Verkannten und Erdbeben
Häufig wird gefragt, kann ein so großer Zylinder nicht im Schaft festklemmen? Nein, das kann er nicht, wenn die Dichtung oberhalb des Schwerpunkts liegt, das liegt daran, dass er dann wie ein Schiff schwimmt, und ein richtig gebautes Schiff ist in einer physikalisch stabilen Lage.
Die Situation bei Erdbeben ist etwas komplizierter. Ein Erdbeben ist eine elastische Welle im Gestein, dabei bewegt sich das Gestein etwas nach Vorne und dann wieder zurück. Am Lageenergiespeicher wird diese Bewegung an das Wasser übergeben und dann an den Zylinder. Die Welle läuft sozusagen durch den Speicher hindurch, da sowohl Wasser wie auch Fels praktisch inkompressibel sind. Dass bei einem Erdbeben Gebäude einstürzen liegt hingegen daran, dass die Seitenwände zwar hervorragend die Kräfte in der Senkrechten aufnehmen können, jedoch kaum Scherkräfte, die bei einem Erdbeben so zerstörerisch wirken.
Verbleibende Probleme
Das größte Problem ist vermutlich, einen Investor zu finden, der das Risiko eingeht, einen solchen Speicher zu bauen, da er neu ist. Insbesondere kann man keinen sehr kleinen Lageenergiespeicher bauen, da der Preis aus geometrischen Gründen mit 1/r² fällt. Das bedeutet, große Speicher haben einen sehr kleinen Preis pro kWh Kapazität, sehr kleine aber einen sehr hohen Preis. Ab einem Radius von etwa 50 Meter sollte der Lageenergiespeicher aber wirtschaftlich zu bauen sein.
Mehr zu Schwerkraftspeicher
Weitere Information:
Der erste Blog zum Lageenergiespeicher: http://heindl.blogspot.de/2010/09/energiespeicher-ohne-grenzen-wind-und.html