Weitere Blogs von Eduard Heindl

Innovationsblog neue Ideen | Some Science my research | Energiespeicher Bedeutung und Zukunft | Energy Age the big picture (engl.)
Posts mit dem Label PV werden angezeigt. Alle Posts anzeigen
Posts mit dem Label PV werden angezeigt. Alle Posts anzeigen

Freitag, 16. Juni 2017

Student Energy Summit 2017 SES2017

Internationaler Student Energy Summit (SES)

Seit 2009 findet alle zwei Jahre der SES statt, eine Konferenz für Studenten die sich für Energie interessieren. In diesem Jahr, 2017, war ich als Sprecher eingeladen, weil offenbar mein früherer TEDx Auftritt zum Thema Lageenergiespeicher (Gravity Storage) gut gefallen hat.

Das Event ist wirklich sehr international, die Studenten waren aus 80 Ländern, ehrlich gesagt habe ich noch nie auf einer Konferenz mit derart weltweit verteilten Teilnehmern gesprochen (Herkunft der Studenten).

Herkunft der Teilnehmer, kein relevantes Land fehlt.

Anreise

Merida in Mexiko liegt leider für uns abgelegen, sodass ich über Houston, Texas, anreisen musste.

Schon der Gangway zum Flugzeug hat zufällig mit Energie zu tun.

Auf dem Flug fallen dem Beobachter beim Blick aus dem Fenster natürlich die Fracking-Felder in Texas auf.

Fracking in Texas.

Nach 16 Stunden, mit einer Zwischenlandung, erreiche ich endlich Merida, noch vor der Zollabfertigung komme ich mit dem Energy Commissioner von Kalifornien, David Hochschild, ins Gespräch, jetzt weiß ich, dass ich am richtigen Ort bin.

Blick aus dem Hotel: Solarthermische Anlagen!

Eröffnung der Konferenz

Die Eröffnung der Konferenz beginnt am späten Nachmittag in der Oper von Merida. Ein etwas merkwürdiges Bild geben die hochrangigen Politiker vor der Opernkulisse ab, ein Arrangement, das nicht Absicht war und nicht unumstritten bei den teilnehmenden Politikern. 

Vom Gouverneur von Yukatán bis zum mexikanischen Energieminister ist viel Prominenz gekommen.

Die Reden der Politiker, unter anderem des Energieministers, werden alle auf Spanisch in erheblicher Lautstärke gehalten, sodass man selbst als aufmerksamer Zuhörer wenig von der Simultanübersetzung versteht.

Wie es der Zufall will, soll in den nächsten Tagen die große Privatisierung der Energiewirtschaft in Mexiko, von Öl bis Strom, erfolgen, also ein gutes Thema für die Sprecher. Einige zynische Hinweise auf Trump, der das Pariser Abkommen zur CO2 Vermeidung ablehnt, haben natürlich auch nicht gefehlt.

Deckenfresko in der Oper

Danach gab es eine echte Opernaufführung, Pagliacci von Leoncavallos über Schauspiel und Realität, die allerdings die Sitzreihen deutlich gelichtet hat.

Vorträge und Panels

Die Vorträge waren zumeist in Panel-Diskussionen eingebunden. Im ersten Panel stand die Frage, was ist eine echte nachhaltige Entwicklung im Vordergrund. Neben technischen Fragen sind auch sozial Fragen für eine gute Entwicklung wichtig.

Alle waren sich einig, dass Fotovoltaik für viele Länder eine große Entwicklungschance bietet, bei der, ähnlich wie bei der Einführung des Mobiltelefons, ein Entwicklungsschritt übersprungen (Leapfrog) werden kann.

Erstes Panel, links die "Mitgründerin" von SES

In der zweiten Session durfte ich im Panel "What's Next, the technological transition" sprechen.
Ich habe neben der Arbeitsweise des Gravity Storage Systems auch allgemeine Aspekte zum starken Wachstum von PV hervorgehoben.

Die Lernkurve bei PV ist für die globale Energiewende wichtig.
Im gleichen Track war noch ein Vortrag über Geothermie, eine unterschätzte Energiequelle, wie der Referent Paul Brophy meinte. 

Spannend war ein Vortrag am Nachmittag über die Zukunft von Öl, gehalten von Chris Sladen, Präsident von BP Mexiko. Er hat mit Folien aus der BP Studie auf das weitere Wachstum des Ölverbrauchs hingewiesen. Die Frage stellt sich natürlich, ob das Zweckoptimismus ist, oder ob das wirklich so kommt.

2. von Links: Chris Sladen, BP daneben aus Saudi Arabien David Michael Wogan.

Zum Schluss gab es noch ein Panel, das die ehemalige Bürgermeisterin Londons, Dame Fiona Woolf, geleitet hat. Während der Diskussion zum Thema Energiepolitik hat ein Zeichner live eine Art visuelles Protokoll der Sitzung angefertigt.

Neben Mrs. Woolf David Hochschild aus Kalifornien


David Hochschild betonte, dass in Kalifornien die drei negativen Vorhersagen; Arbeitslosigkeit, Wirtschaftsstagnation und Blackout, die durch die Umstellung auf erneuerbare Energien kommen sollten, nicht eingetroffen sind. Über 100.000 neue Arbeitsplätze, nicht zuletzt bei Tesla, höheres Wirtschaftswachstum als im Rest der USA und kein einziges Blackout!

Wichtig war ihm weiterhin, darauf hinzuweisen, dass langfristig angelegte politische Rahmenbedingungen sehr wichtig für Investitionen in Erneuerbare sind, Programme, die nur ein bis zwei Jahre laufen, bringen nichts. Ein lang laufendes Programm über 15 Jahre kann sehr erfolgreich sein.

Zweiter Kongresstag

Der Tag begann mit einem Vortrag im "Centro de Investigación Científica de Yucatán, A.C. (CICY)" vor Studenten. Eine Begleitveranstaltung zum SES2017 in Mexiko.

Das Wachstum der erneuerbaren Energiequellen Sonne und Wind in meinem Vortrag erläutert.

Anschließend ging es im Kongresszentrum mit einem sehr spannenden von Guillaume Fouché von Bloomberg weiter. Er zeigte mit einem Feuerwerk gut aufbereiteter Folien die Megatrends im Energiebereich auf.

Das Ende des Kohlezeitalters symbolisiert durch die Installation von Solarzellen auf dem Dach des Kohlemuseums in Kentucky.

Neben den Symbolbildern wie dem obigen, auch eine Grafik, die zeigt, dass, durch Optimierung der Standorte, die Windenergie wesentlich wirtschaftlicher geworden ist. Ich vermute, das liegt auch daran, dass der weltweite Anteil in Deutschland aufgestellter Windkraftwerke zurückgeht, die notorisch wenig Wind ernten können.

Windkraftwerke werden international immer effizienter, von 12% auf 32% innerhalb von 20 Jahren.

Die Zukunft gehört dem Elektroauto, die Verteilung der vorhandenen und geplanten Elektroautos als Grafik in Abhängigkeit von Reichweite und Größe bis 2020.

Alle werden Elektroautos liefern, wenn die Ankündigungen stimmen. (Bild, wie alle anderen, zum Vergrößern anklicken)

Nach so viel Zukunft durfte ich erst einmal für meine CO2-Emissionen Abbitte leisten. Für den Flug aus Europa habe ich wohl so viel CO2 erzeugt, dass dies nur durch 50$ als Spende an ein Regenwaldprojekt in Mexiko ausgeglichen werden kann. 

50$ für den Regenwald, meine Ablasszahlung für den CO2 Fußabdruck meiner Anreise.

Am Nachmittag gab es dann einen Riesenworkshop, in dem die Studenten die Themen, die ihnen wichtig waren, bearbeiteten. An 26 Tischen wurden, mit sehr unterschiedlichem Temperament, die Themen bearbeitet. Von der Frage zur Kernenergie bis zu solaren Smartphone Ladegeräten war alles dabei.

Die Themen der 26 Workshops

Anschließend wurde präsentiert, mit Schlagworten wie "New, Clear" (Nuklear) haben sich einige für Kernenergie eingesetzt, eine Gruppe hat ein Wasserrad zur Generation von Strom an abgelegenen Fluss-Siedlungen gezeigt.
Andere wollen die Fotosynthese verbessern oder eine Energie App für Kinder schreiben. Die Resultate waren sehr bunt und wurden lustig präsentiert.


Präsentation der Resultate, hier nachhaltige Gemeinschaften.

Am Abend gab es noch eine sehr laute Party vor einer alten Kolonialzeit Villa.

Quinta Montes Molina, a great location!


Workshops

Nach der Party ließ das mexikanische Organisationsteam den Tag sehr ruhig angehen, um 11h starteten nach längerer Bus anreise am Campus der Yukatán Universität mitten im Urwald mehrere Workshops.

Tief im Wald liegt der Campus und Technologiepark. (Die vierspurige Autobahn war sehr leer)


Die Studenten waren mit großer Begeisterung dabei, wenn auch die Fragestellungen in der sehr lauten Atmosphäre eher untergegangen sind. Trotzdem eine interessante Erfahrung, wenn an einem Tisch junge Menschen aus allen Kontinenten sitzen.

Wir tanzen die Wasserkraft.

Rückflug

Auf dem Rückflug noch ein Blick auf die Erzeugung von CO2 mit deutscher Braunkohle, traurig!

Schlimmer als Fracking, Braunkohle Tagebau am Rhein.


Weitere Berichte von Kongressen und Konferenzen

Dienstag, 27. September 2016

Wie viel Speicher brauchen wir?

Energiewende braucht Speicher

Die weltweite Energiewende ist im vollen Gang. Im letzem Jahr, 2015, wurde mehr regenerative Kraftwerkskapazität, Wind, Sonne, installiert, als alle Kohle, Erdgas und Kernkraftwerke zusammen. Allerdings mit einem kleinen Schönheitsfehler, die installierte Leistung produziert nicht Nachts oder bei Windstille, das bedeutet, für eine Vollversorgung benötigt man noch Energiespeicher. 

Wie gross der Speicherbedarf ist, kann man nicht eindeutig bestimmt werden, da er von vielen Faktoren abhängt. In diesen Blogbeitrag will ich aber eine globale Abschätzung des Speicherbedarfs festhalten.

Die globale Energiewende

Zunächst sei darauf hingewiesen, dass ich hier nicht die Situation in Deutschland beschreibe, sondern die globale Situation. Das ergibt Sinn, da nur global die Probleme von Peak Oil oder das CO2 Problem gelöst werden können. Umso erfreulicher ist es, dass etwa in 2016 fast doppelt so viel Photovoltaik (PV), 70 GW, installiert wird, wie in Deutschland installiert ist. Und Deutschland ist mit 40 GW zweiter hinter China in der Liste der PV Installationen. Es sei darauf hingewiesen, dass ich hier nur den Stromverbrauch betrachte, längerfristig wird alle Energienutzung auf Strom umgestellt, was nochmals zu einer Verdopplung aller vorgestellten Zahlen führen dürfte.

Die Entwicklung der globalen Energiewende kann man verstehen, wenn man die Entwicklung der letzten 25 Jahre aufzeichnet:
Entwicklung des Energieverbrauchs und der Installation von Erneuerbaren Energiequellen,
Grafik eigene Darstellung, Daten von BP.
Zunächst sieht man, dass der Strombedarf in der logarithmischen Darstellung konstant wächst, um etwa 3% pro Jahr. Der Zubau von Wind- und Solarkraftwerken aber mit 22% was dazu führt, dass ca. 2025 weltweit so viel PV und Wind installiert ist, wie konventionelle Kraftwerke. Eine Situation, die in Deutschland schon erreicht ist!

Die produzierte Strommenge reicht aber erst, um das Jahr 2030 aus um den gesamten Bedarf Strombedarf der Welt zu decken, immer vorausgesetzt, dass der Zubau weiter wächst. Die Deckung des gesamten Strombedarfs kann man aber nur erreichen, wenn ausreichend Speicher vorhanden sind und das wird in nächsten Jahrzehnt das ganz große Thema.

Einflüsse auf den Speicherbedarf

Den größten Einfluss auf den Speicherbedarf hat das Stromnetz. Das liegt daran, dass man mit dem Stromnetz den Strom optimal vom Erzeuger zum Verbraucher transportieren kann. Scheint etwa in Süddeutschland die Sonne, kann man den PV Strom in den Norden transportieren, umgekehrt, weht im Norden der Wind, kann man den Windstrom über die gleichen Leitungen in den Süden transportieren.
Dies habe ich bereits in einem früheren Blogbeitrag "Stromleitungen als Energiespeicher" genauer betrachtet.

Es gibt daher einen Wettbewerb zwischen Speicher und Leitungen.
Das Optimum zwischen Netzkosten und Speicherkosten muss gefunden werden
Theoretisch könnte man eine Leitung um die Erde legen und daran alle Solarkraftwerke anschließen. Es wäre immer Strom ohne Speicher verfügbar, da immer irgendwo die Sonne scheint. Allerdings ist das sehr teuer und auch der Transport über sehr große Strecken führt zu Verlusten in der Leitung. Alternativ kann man sich einen Speicher in den Keller stellen, der über ein halbes Jahr die Solarenergie sammelt und dann käme man völlig ohne Leitung aus. Dieser Speicher müsste pro Person etwa 1000 kWh speichern können, bei aktuellen Preisen von 1000€/kWh für private Batteriespeicher zahlt man dann pro Person eine Million für den Speicher, nicht ökonomisch darstellbar, wie man so schön sagt.

Genauere Rechnungen, wie sie etwa von J. Tambke und L. Bremen [1] durchgeführt wurden, zeigen, dass bei einem optimalen Netzausbau in Deutschland und vollständiger Umstellung auf Wind- und Solarenergie die Energie "nur" für eine Woche gespeichert werden muss. Bei einer "Kupferplatte" über ganz Europa benötigt man sogar nur zwei Tage Speicherkapazität.

Sieht man sich die Weltkarte an, so wird allerdings schnell klar, dass weitreichende Stromnetze nicht überall auf Zustimmung stoßen werden. Stromleitungen sind eine empfindliche Infrastruktur und wer will schon, dass der Strom durch Krisenregionen geleitet wird, was bedeuten kann, dass plötzlich die Leitung ausfällt. Es gibt da Historisch leider einige Beispiele.

Weitere Optimierungsmöglichkeiten

Weitere Faktoren auf den Speicherbedarf stellen die Verbraucher dar. Würden alle Verbraucher genau dann die Energie abrufen, wenn die Sonne scheint oder der Wind weht, wären überhaupt keine Speicher erforderlich. Aber da sehr viele Verbraucher nur aufwendig flexibler werden können, so will etwa niemand nur dann mit dem Zug fahren, wenn gerade die Sonne scheint, muss man immer mit einer gewissen Grundlast rechnen. Dabei sein angemerkt, dass nur 40% des Stromverbrauchs in Haushalten stattfindet, der Rest teilt sich auf Industrie, Gewerbe und öffentliche Einrichtungen auf.
Wichtige Einflussfaktoren für den Speicherbedarf, eigene Darstellung.
Auch das Smart Grid, zeitweise stark beworben kann nur etwa 10% des Verbrauchs verschieben, siehe Blogbeitrag "Das Märchen vom Smartgrid". Und trotzdem kann man den Bedarf natürlich optimieren, warum sollte ein chemischer Reaktor auf voller Leistung laufen, wenn gerade der Strom knapp und damit auch teuer ist? Ich gehe optimistisch davon aus, dass etwa 50% des Speicherbedarfs durch optimale Steuerung aller Verbraucher vermieden werden kann.

Speicherbedarf im Jahr 2030

Im Jahr 2030 wird bei kontinuierlichem Wachstum etwa ein globaler Stromverbrauch von 5.000 GW vorhanden sein. Geht man von einer sehr guten Vernetzung aus, das bedeutet, Regionen von der Größe Europas können fast perfekt den Strom austauschen benötigt man zwei Tage Speicherkapazität. Berücksichtigt man dann noch, das 50% des Speicherbedarfs durch optimale Steuerung eingespart werden, muss man Speicher haben, die eine Kapazität von einem Verbrauchstag speichern können. Bei 5.000 GW Strombedarf und 24 h Speicherbedarf ist das eine Kapazität von 120.000 GWh

Weltweiter Speicherbedarf in 2030: 120.000 GWh.

Diese Speicherkapazität ist gewaltig, daher soll sie in Relation zu bekannten Speichern gesetzt werden. In Deutschland gibt es Pumpspeicher mit einer Kapazität von 40 GWh. Das ist weniger als 0,03% des globalen Speicherbedarfs, dabei hat Deutschland noch ein gut ausgebautes Pumpspeichersystem. Will man die Speicherkapazität mit Batterien aufbauen und nutzt dazu die Gigafactory von Elon Musk in Nevada, die nach Fertigstellung etwa 50 GWh Batterie-Kapazität im Jahr produziert, benötigt man 2.400 Jahre bis ausreichend Batterien produziert sind.
Der Lageenergiespeicher, Gravity Storage [2], kann in einer Standardausführung mit 250 Meter Durchmesser 8 GWh speichern. Das bedeutet man benötigt, davon 15.000 Stück. Oder wenn man die große Version mit 500 Meter Durchmesser wählt, immer noch ca. 1000 Stück. 

Vermutlich wird daher nur ein Teil des Speicherbedarfs über echte Energiespeicher wie Batterien oder Pumpspeicher abgedeckt. Der Rest könnte noch für einige Zeit aus Erdgaskraftwerken kommen oder durch optimales Managen von großen Stauseen. 

Auf jeden Fall wird es einen gewaltigen Markt für Energiespeicher geben!

Quellen:

[1] Jens Tambke, Lueder von Bremen, Länderübergreifender Ausgleich für die Integration Erneuerbarer Energien.
[2] Gravity Storage, engineered by Heindl Energy GmbH

Freitag, 19. Februar 2016

Speicher für große PV Anlagen

Energiespeicher für große Solarfelder

Zunehmend werden für die Wüsten dieser Welt Solarkraftwerke geplant, um die regionalen Bedürfnisse des Energiebedarfs zu decken. So wurden allein im Jahr 2015 mehr als 59 GW PV neu installiert [1]. In Regionen mit schwächeren Stromnetzen sind diese schnell überfordert, daher müssen dringend Speicher als Zusatzelement bereits in der Projektentwicklung berücksichtigt werden.

PV und/oder CSP

Bis heute werden PV Großkraftwerke nicht zusammen mit Speichern betrieben, da es an preiswerten Technologien mangelt und noch kein akuter Bedarf existiert. Konzentrierende Solarkraftwerke (Concentrated Solar Power CSP) nutzen bereits heute große Salzspeicher die mithilfe der Solarenergie erwärmt werden und damit in den Nachtstunden über eine Dampfturbine Energie liefern können. 
Prinzipieller Aufbau eines CSP Kraftwerks mit Wärmespeicher (Quelle: nest)
In der abgebildeten Anordnung benötigt man neben dem Solarfeld, das zumeist in Form von Rinnenkollektoren aufgebaut ist, einen großen Salzspeicher, einen Wärmetauscher, eine Dampfturbine und insbesondere einen Condenser, der erhebliche Mengen an Wasser verbraucht, wenn er effizient betrieben werden soll. 
Modell einer CSP Anlage mit Rinnenkollektoren in der Wüste
Das Kernproblem sind aber die Kollektoren, die aus schwenkbaren Spiegeln bestehen und daher viel empfindliche Mechanik enthalten um mit einer Präzision von weniger als 0,5 Grad dem Stand der Sonne nachgeführt zu werden. Zudem wird durch ein zentrales Rohr ein heißes Öl unter hohen Druck transportiert, daher benötigt man bewegliche Dichtungen die das System letztendlich Wartungsintensiv und damit teuer machen.

Solange PV teuer war, und das liegt ja weniger als 10 Jahre zurück, dass ein kW PV über 5.000$ gekostet hat, war PV gegenüber thermischen Solarkraftwerken keine Alternative. Aber die Zeiten haben sich geändert. Die Installation von PV Großanlagen kostet pro kW nur noch 1.300$ und ist damit erheblich günstiger als CSP, solange man ohne Speicher arbeitet.

PV und Gravity Storage

Photovoltaik ist inzwischen pro installierter Kilowattstunde wesentlich (etwa Faktor zwei) preiswerter als eine CSP Anlage. Daher bietet es sich an, eine PV Anlage mit einer Speichertechnologie zu kombinieren, die wettbewerbsfähig ist.
Prinzipieller Aufbau eines PV-Felds mit einem Lageenergiespeicher (Gravity Storage)
Ein Lageenergiespeicher (Gravity Storage) ermöglicht es, eine kWh so günstig zu speichern, dass eine Kombination von PV und Gravity Storage einen wettbewerbsfähigen Preis in nicht subventionierten Strommärkten ermöglicht.
Modell eines PV-Felds mit einem Großspeicher (Gravity Storage)
Mit dieser Kombination ist es dann möglich, eine kontinuierliche Stromversorgung in der Wüste zu ermöglichen.
Ein weiterer wichtiger Aspekt ist das Fluktuieren der PV Leistung insbesondere bei heraufziehender Bewölkung. Innerhalb von Minuten kann die Leistung eines PV-Felds dann um viele 10 MW abfallen. Das kann von einem Stromnetz das weitgehend auf erneuerbare Energien beruht nicht abgefangen werden. Daher müssen Speicher, die schnell reagieren und große Leistungs- und Energiekapazitäten haben, in das Stromsystem integriert werden.
Schwankung der PV Leistung bei unterschiedlicher Anlagengröße, Quelle [2]
Die Abbildung veranschaulicht, wie steil selbst bei großen PV Anlagen die Stromproduktion ansteigen oder abfallen kann. Es gibt zwar einen gewissen Dämpfungsfaktor durch die große Fläche der Anlage, aber dieser genügt nicht um das Stromnetz stabil zu halten.
Hier sollte erwähnt werden, dass in Ländern wie Deutschland, in dem die Dachanlagen sehr weiträumig verteilt sind, die wetterbedingten steilen Flanken keine entscheidende Rolle für die kurzzeitige Netzstabilität spielen.

PV plus Speicher erlaubt 24h Solarstrom 

Wenn die Welt nicht nur am Tag mit Solarstrom versorgt werden soll sondern auch in der Nacht, dann ist es notwendig gewaltige Speicherkapazitäten aufzubauen. Heute werden vom Kraftwerkspark stündlich 5000 GWh produziert, Selbst wenn in der Nacht der Bedarf nur halb so groß ist, so kann man abschätzen dass für die durchschnittlich 12 Nachtstunden etwa 30.000 GWh gespeichert werden müssen. Zum Vergleich, in Deutschland gibt es eine Speicherkapazität von 40 GWh in Form von Pumpspeichern.
Der Investitionen für den globale Umstieg auf Solarenergie wird sich etwa zur Hälfte aus Speicherkosten und zur anderen Hälfte aus den Kosten für die PV Anlagen zusammensetzen, wie man bei einer genauen Rechnung sieht. Umgelegt bedeutet das eine Investition von 7500 € pro Erdenbürger oder heruntergerechnet auf den Monat, bei 30 Jahren Betrieb, 20 Euro Stromerzeugungskosten pro Monat!
Gelingt diese Investition, dann haben alle Menschen eine stabile, saubere und sichere Stromversorgung.

Quellen:

[1] Joshua S Hill, Global Solar PV Installations Grew 34% In 2015, CleanTechnica, Januar 22, 2016


Mittwoch, 26. August 2015

Wind- oder Sonnenenergie speichern?

Energiespeicher für Wind oder Solarenergie

Energiespeicher sind das fehlende Element in der vollständigen Energiewende zu erneuerbaren Energien. Bevor man aber in die Energiespeicher investiert, sollt man überlegen, für welchen Form der erneuerbaren Energien der Speicher sein soll. 

Das Problem der Zeiträume

Jeder Energiespeicher kann nur eine begrenzte Zeit der geringen Energielieferung überbrücken und nur über begrenzte Zeit Energie einspeichern. Baut man einen Energiespeicher mit endlicher Kapazität, dann spielt es eine große Rolle, wie oft man den Energiespeicher pro Jahr füllen und leeren kann. Da man mit jedem Zyklus wertvolle Energie zu Zeiten liefern kann, in denen keine fluktuierende Quelle zur Verfügung steht, wird die Rentabilität durch die Zahl der Zyklen im Jahr bestimmt.
Windkraftwerke liefern nur dann Energie, wenn Wind weht, das hängt direkt vom Wetter ab und in vielen Gegenden der Welt gibt es nur einige zehn Zyklen pro Jahr. In Deutschland sieht das so aus:
Windenergie im Jahresverlauf (Daten: ISE)
Die Abbildung zeigt, neben dem sehr unregelmäßigem Auftreten von Wind, auch die enormen Schwankungen in den Leistungsspitzen.
Die Situation bei der Solarenergie ist völlig anders. Weil die Sonne täglich scheint, wenn auch in Deutschland nicht immer besonders stark, so kann man doch sicher sein, dass es zumindest in jeder Nacht dunkel wird. In südlichen Ländern, in denen 80% der Weltbevölkerung leben, liegt ein relativ einfacher 24h Zyklus vor, der jeden Tag ausreichend Leistung aus PV liefern kann aber nie in der Nacht.
Regelmäßigkeit bei der PV Produktion (Daten: ISE)
Will man also Solarenergie speichern, benötigt man nur einen Speicher für maximal 24h und kann den Speicher 365 mal im Jahr optimal nutzen.

Wachstum der Solarinstallation

Obwohl an vielen Stellen der Welt die Erzeugung von Windenergie aktuell günstiger ist als die Erzeugung von Solarenergie, wächst die installierte Leistung der Solarenergie überdurchschnittlich. 
Betrachtet man das Verhältnis der weltweit installierten Leistung von PV-Anlagen mit denen der Windkraftwerke, erhält man einen erstaunlichen Trend:
Verhältnis von Solarkraftwerken zu Windkraftwerken (Eigene Analyse)
Seit 2010 wächst die Installation von PV wesentlich schneller als die der Windenergie und erreicht sicher bald das Verhältnis 1:1. Das liegt aktuell noch nicht an der guten Verfügbarkeit von Speichern, sondern an der Tatsache, dass am Tag mehr Strom gebracht wird, als nachts und damit die Solarenergie besser zu nutzen ist. 
Längerfristig wird aber die einfachere Speicherung einer Energiequelle, die alle 24 Stunden zur Verfügung steht, erhebliche auswirken auf die Wahl der Stromquelle haben. Damit dürfte der Trend zu Solarkraftwerken noch beschleunigt werden. Weitere Vorteile von PV sind, die extrem geringe Wartung und die leichtere Integration in das Landschaftsbild, nicht jeder liebt Windkraftwerke mit 100m hohen Masten und hörbaren, bewegten Rotoren. PV wird da immer im Vorteil sein.

Welcher Speicher ist sinnvoll?

Welche technische Lösung für das Speicherproblem bei der Solarenergie gewinnt, ist nicht sicher, vermutlich wird es eine Mischung aus Batterien, Lageenergiespeicher und Pumpspeichern.
Der Ansatz von Power to Gas (Windgas!) hat in einer Wind-dominierten Erzeugerlandschaft einen gewissen Charme, weil dort ein praktisch "Unendlicher" Speicher in Form von Gaskavernen existiert. Allerdings ist der Wirkungsgrad so schlecht (28%), dass kaum ein Geschäftsmodell im Strommarkt möglich sein wird.


Sonntag, 25. Januar 2015

Sonne in der Wüste braucht Speicher

World Future Energy Storage

Nach einer Woche auf der Arabischen Halbinsel in Abu Dhabi will ich meine Eindrücke von der World Future Energy Storage hier weitergeben. Es handelt sich um eine Energiemesse, auf der alle großen Player der Energieversorgung zu sehen waren, Nicht nur PV Unternehmen wie First Solar, sondern auch die Ölkonzerne wie BP, Statoil, Stromkonzerne wie Alstom und ABB, haben auf großen Messeständen, neben der Heindl Energy GmbH (28m²), auf die zukünftigen Lösungen für die Energieversorgung hingewiesen.
Eröffnung durch den Staatspräsident Scheich Chalifa bin Zayid Al Nahyan der vereinigten Arabischen Emirate.

PV wird gewinnen

Die Photovoltaik beginnt einen Siegeszug in Ländern mit Sonne, den man sich in Deutschland aktuell nicht vorstellen kann. Rainer Baake, Staatssekretär im Bundeswirtschaftsministerium, wunderte sich sichtlich, dass hier ein Preis von 4,8 Cent/kWh für Solarstrom von den Kraftwerksbetreibern angeboten wird, ohne Subvention! Die Rechnung ist natürlich sehr einfach, wenn in Deutschland bei 14 Cent/kWh eine Solaranlage wirtschaftlich ist, dann ist Sie in Ländern mit der dreifachen Solareinstrahlung logischerweise bei 5 Cent/kWh wirtschaftlich.
Verschiedene Solarkonverter auf der Messe die für die Wüste geeignet sind, Modell am Stand von Masdar.
Jeder Stromversorger wird daher PV bevorzugen, wenn er die Chance hat, damit den teuren Brennstoff für den Dieselgenerator einzusparen. In den Ländern mit Öl ist das eine einfache Rechnung: Jedes Barrel Diesel, das nicht für Strom verwendet wird, kann auf dem Weltmarkt verkauft werden, aktuell für 50$ in naher Zukunft sicher auch wieder etwas teurer. Da aus einem Liter Diesel nur 3 kWh Strom erzeugt werden können, ist nur bei einem Preis unterhalb von 15 Cent/Liter ein Dieselgenerator wirtschaftlich. Rechnet man die Kosten für den Generator und die Umweltverschmutzung hinzu, wird der Kostenvorteil der Solarenergie noch extremer.
Eine direkte Folge ist, dass inzwischen in den Wüstenstaaten die Produktion von PV Produktionsstätten anläuft. Man will die Wertschöpfungskette Energie im Land behalten!

Speicher und PV

Eine PV-Anlage  kann heute in sonnenreichen Gegenden sehr wirtschaftlich betrieben werden. Leider scheint die Sonne aber auch in den Ländern des Südens nur am Tag, in den 365 Nächten des Jahres wird aber auch Strom benötigt. 
Damit eine durchgehende Stromversorgung möglich wird, benötigt man einen Speicher, der die gewaltigen Energiemengen, die eine Stadt benötigt, kostengünstig und langfristig bereit stellen kann. Leider können das Batterien heute nicht leisten, da neben dem Preis auch die Langlebigkeit bei vielen Ladezyklen schwierig ist.
Das Hydraulic Rock Storage System der Heindl Energy hat in der arabischen Welt großes Interesse gefunden.

Der Lageenergiespeicher

Der Lageenergiespeicher, den wir international Hydraulic Rock Storage nennen, kann das Problem lösen. Obwohl der Speicher auch Wasser benötigt, das in Wüstenregionen knapp ist, kann er für die Speicherung eingesetzt werden. Der Wasserverbrauch einer Stadt wie Abu Dhabi an einem Tag ist größer als der einmalige Bedarf an Wasser (1300 tausend m³) für einen Lageenergiespeicher mit einer Gigawattstunde Kapazität!
24 Stunden Solarstrom sind mit dem Lageenergiespeicher möglich

Wird eine Solaranlage  mit einer Leistung von 200 MW in einer sonnenreichen Region gebaut, dann kann diese Solaranlage zusammen mit einem Speicher der eine Gigawattstunde Kapazität hat, eine 24 Stunden Vollversorgung mit Solarstrom gewährleisten. 
Speicher sind in Regionen mit Solarstrom wesentlich wirtschaftlicher als in Deutschland, da sie über 300 Zyklen im Jahr fahren und nicht nur 170, wie in Deutschland üblich. Wird der Strom in der Nacht mit einen Aufschlag von wenigen Cent verkauft, ist er Konkurrenzfähig zu Dieselgeneratoren und finanziert die Investition in einen Lageenergiespeicher schnell.

Dauerhafte ökonomische Solarenergie

Obwohl man sich im Winter in Deutschland kaum eine reine Solarstrom-Versorgung vorstellen kann, ist diese in sehr vielen Ländern der Erde möglich. Der Durchbruch bei den Preisen für Photovoltaik und die neu gefundene Möglichkeit die Energie zu speichern werden innerhalb von zwei Jahrzehnten zu einer völligen Umstellung der Stromversorgung aus rein wirtschaftlichen gründen führen.

Quellen:

Eigene Bilder
Mehr zur Konferenz:
Hinweis: Bei der Bezeichnugn Cent wurde nicht zischen $ und € unterschieden.

Freitag, 23. Mai 2014

Energiespeicher Holz

Ein Vergleich von Holz und Photovoltaik

Diesmal tritt zum Wettbewerb zwischen den Energieträgern Holz und PV-Strom an. Holz ist definitiv der älteste vom Menschen genutzte Energieträger. Holz wächst als natürlicher Rohstoff nach, allerdings nicht annähernd so schnell, wie wir Energie verbrauchen. Das hat im 18. Jahrhundert fast zur vollständigen Entwaldung Europas geführt. Zum "Glück" kam dann die Kohle, die zumindest den Wäldern wieder eine Chance gegeben hat.

Wie viel Energie ist in Holz?

Jeder Brennstoff hat einen Heizwert, bei Holz ist das etwas komplizierter, da der Heizwert bei Holz empfindlich vom Wassergehalt abhängt, siehe Abbildung.
Heizwert von Holz stark vom Wassergehalt abhängig (Quelle: Wikipedia)
Gut gelagertes Holz hat weniger als 15% Restfeuchte, damit liegt der Heizwert bei 4,2 kWh/kg Holz. Ein Raummeter Fichtenholz wiegt 330 kg und hat damit einen Energiegehalt von 1.400 kWh Wärmeenergie. Umgerechnet auf Strom, der eine höherwertige Energie ist und in einem Kraftwerk aus Wärme gewonnen werden kann, "enthält" ein Festmeter 600 kWh Strom. 
Holz oder (und?) Photovoltaik, was ist sinnvoll?
Im Bild sieht man eine PV Anlage, die auf einem Holzlager montiert ist. Interessanterweise liefert diese PV-Anlage bei einer Leistung von 2 kW jedes Jahr 2000 kWh Strom, innerhalb von drei Jahren füllt diese PV-Anlage den Holzschuppen "virtuell", dann hat Sie die elektrische Energie von 10 Raummeter geliefert. Drei Jahre ist auch etwa die Zeit, die man warten muss, bis das Holz perfekt trocken ist.

Wie schnell wächst Holz nach?

Der jährliche Holzzuwachs pro Hektar liegt laut Landwirtschaftsministerium [1] bei 16 m³ für schnell wachsende Hölzer wie Fichte. Das Entspricht, bei Berücksichtigung der Umrechnung auf Raummeter, etwa 25 Raummeter oder 35.000 kWh.
Im Vergleich zu einer PV-Anlage bietet sich an. Diese würde auf einem Hektar 500.000 kWh Strom produzieren [2]. Damit ist der Flächenbedarf in der Holzwirtschaft 14 mal größer als bei PV-Freiflächen-Anlagen. Allerdings ist das nur eine sehr grobe Abschätzung, da nur ein Teil des Holzes rein für den Brennholzbedarf angebaut wird und praktisch kein Holz für die Stromerzeugung verwendet wird.
Der große Vorteil von Holz ist allerdings die langfristige Lagerfähigkeit der Energie, was bei Strom praktisch nicht möglich ist.

Wie teuer ist Holz

Entwicklung Holzpreis im Vergleich zu Öl und Gas (Quelle: C.A.R.M.E.N [3])
In der Praxis spielt der Preis für die verschiedenen Brennstoffe eine große Rolle, bei gleichem Energiegehalt ist Holz nur halb so teuer als Gas oder Öl. Die Preisschwankungen auf dem Öl- und Gasmarkt, siehe Abbildung oben, machen allerdings den direkten Vergleich etwas schwer. Holz hat zusätzlich den Vorteil, dass es "CO2-frei" ist, da es sich um einen nachwachsenden Rohstoff handelt.

Fazit

Wie so oft in der Energiewirtschaft ist es sehr schwierig, die Eigenschaften verschiedener Energieformen miteinander zu vergleichen. Der Autor heizt mit Holz, genauer mit Stückholz und einem zentralen Holzofen mit 92% Wirkungsgrad. In der Praxis muss man allerdings den Umgang mit Holz und dem Ofen lieben, es macht Arbeit, Dreck und manchmal wundert man sich am Morgen, wenn der Ofen ausgegangen ist und man kalt duschen muss.

Quellen:

[1] Zuwachs - nach Baumart unterschiedlich, Bundesministerium für Landwirtschaft und Ernährung.
[2] Freilandanlagen, Solaranlagen-Portal, http://www.solaranlagen-portal.com/photovoltaik/freilandanlage
[3] CENTRALES AGRAR- ROHSTOFF- MARKETING- UND ENERGIE-NETZWERK, http://www.carmen-ev.de/

Freitag, 9. Mai 2014

Sonne, Fenster und die Steuern auf Energiespeicher

Steuer auf Solarstrom

Wenn ich früh am Morgen den Rolladen hochfahre um das Tageslicht zu nutzen und dabei die elektrische Lampe abschalte ist das schlecht für den Finanzminister. Den auf den Strom, den meine Sparlampe verbraucht bekommt er Steuern. Pro Kilowattstunde 14 ct, davon 2 ct Stromsteuer und 5 ct Mehrwertsteuer und viele andere Steuern, siehe "Stromsteuer oder Strom steuern".
Da ist es natürlich einleuchtend (sic) dass der Staat eine Steuer auf das Licht erheben will. Obwohl es fast wie eine Idee aus Schilda, der Heimatstadt der Schildbürger, klingt, will das der SPD Wirtschaftsminister!
Sonnensteuer auf eigene Äpfel und getrocknetes Heu! Nein bisher nur auf Solarenergie.

Sonne für Mieter doppelt so teuer

Es ist tatsächlich geplant, mit der Reform des EEG auf selbst genutzten Solarstrom eine Umlage von 3 ct pro kWh zu erheben. Und da die Idee von einem Sozialdemokraten kommt gibt es für Mieter gleich die doppelte Gebühr nämlich 6 ct pro Kilowattstunde [1].
Wo liegt eigentlich der Unterschied zwischen einem Fenster, durch das das Sonnenlicht in mein Zimmer fällt und einer PV Anlage, die für mich das Sonnenlicht in Strom umwandelt und es mir ermöglicht, dass ich auch im Keller Licht habe?
Es gibt keinen.
Wenn ich im Garten einen Apfel ernte, dann schadet das dem Wochenmarkt, denn ich kaufe den Apfel nicht und zahle daher keine Mehrwertsteuer auf den Apfel.
Der Apfel ist gespeicherte Solarenergie.
Und wo liegt der Unterschied, wenn ich auf dem Dach eine PV-Anlage betreibe und mit einem Akku die Energie Speichere, damit ich in der Nacht ein Buch bei Licht lesen kann?
Und warum muss ein Mieter dafür doppelt so viel Abgaben zahlen als ein Hauseigentümer.

Selten so gewundert

In diesem Blog versuche ich immer, Tatsachen aus dem  Bereich der Energiespeicherung zu erklären, aber diesmal will es mir nicht gelingen auch nur im Ansatz zu verstehen, warum Sonnenlicht nicht mehr ein freies Gut sein soll.
Ich habe für die PV-Anlage gezahlt, inklusive der Mehrwertsteuer. Ich habe für die Dachfläche gezahlt, inklusive Grunderwerbssteuer. Ich habe für das Regenwasser, das vom Dach abläuft gezahlt, in Form einer Abwasserabgabe. Aber das Licht, das auf das Haus fällt, muss genau so wie die Luft die ich atme, frei von Steuern beleiben.


Quellen:
[1] EEG-Novelle, www.solarserver.de

Sonntag, 30. Juni 2013

Lithium oder Blei Batteriespeicher, ein Vergleich

Welcher Speicher ist besser: Lithium oder Bleiakku?

Bei vielen Technologien gibt es immer wieder ein Kopf an Kopf rennen. Soll man ein Diesel- oder Benzinmotor fahren? Ist Solarenergie oder Windstrom besser? Letztendlich wird es der Markt entscheiden, oft bleiben aber auch beide Lösungen bestehen, bis eine Dritte die alten Lösungen ablöst.

Der Bleiakku

In der Batterietechnik gibt es das alte Schlachtross Bleiakkumulator, bereits 1854 wurde der Bleiakkumulator von Wilhelm Josef Sinsteden erfunden und entwickelt. Aufgrund der großen Atommasse von Blei benötigt man für das Abspeichern von einer kWh Strom einen 33kg schweren Bleiakku. Dies mach den Bleiakku für die Anwendung in normalen Kraftfahrzeugen viel zu schwer.
Für die stationäre Speicherung von Energie, etwa für eine Photovoltaik Anlage, spielt das Gewicht keine so große Rolle. Im Haus stört eher, dass in einem Bleiakku sehr viel gefährliche Schwefelsäure verwendet wird, daher müssen die Bleiakkumulatoren sicher gelagert werden.
Würde man Bleiakkus in großem Umfang einsetzen, stellt sich die Frage, ob Blei überhaupt in ausreichender Menge gewonnen werden kann. Aktuell werden auf der Welt 3 Millionen Tonnen Blei pro Jahr gefördert, dabei kommt ein Drittel aus China. Theoretisch könnte man mit dieser Menge 90 GWh speichern. Das entspricht etwa der Speicherkapazität der europäischen Pumpspeicherwerke (Ohne Norwegen).

Der Lithium Ionen Akkumulator

Erst seit 1991 gibt es Lithium Ionen Akkumulatoren, der erste Lithium-Kobaltdioxid Akkumulator wurde, da der Li-Akku sehr leicht ist, für eine Videokamera von Sony eingesetzt. Eine genaue Angabe, wie schwer ein Lithium Akku ist, ist nicht so einfach möglich wie bei Blei, da bei Lithium Akkus nicht das Gewicht von Lithium dominiert, sondern die anderen Bauteile und Elektrolyten. Theoretisch genügen 80 Gramm Lithium, um eine kWh Strom zu speichern, in der Praxis liegt der Wert aufgrund der notwendigen Elektrolyten deutlich über einem Kilogramm. Für mobile Anwendungen ist aber Lithium heute immer die erste Wahl, obwohl der Preis eines Lithium Akkus höher ist als bei anderen Akkumulatoren.

Kostenwettbewerb

Jetzt soll der Bleiakku in direktem Wettbewerb mit dem Lithium-Akku für die stationäre Stromspeicherung gestellt werden, wie er für eine PV-Anlage oft Verwendung findet. 
Folgende Ausgangssituation, die von Professor Sauer in Mainz auf der VDI-Tagung vorgetragen wurde, soll angenommen werden[1]. 
  • Speicherkapazität 5kWh
  • Systemlebensdauer 20 Jahre
  • Kapitalzins 2%
Blei-Akku und Lithium Akku im Vergleich
Das verblüffende Resultat ist, beide Systeme sind in der Praxis mit 13,2ct/kWh gleich teuer. Die Investition in die Lithium-Ionen-Batterie ist zwar höher, als in die Blei-Säure-Batterie, aber die Lebensdauer des Lithiumsystems kompensiert diese Differenz wieder.
In der Berechnung von Sauer werden sehr viel geringere Preise für das Lithiumsystem angenommen, wie man es aktuell im Handel findet. Seine Argumentation ist, diese Preise entsprechen den Werten, die heute in der Elektromobil-Produktion bereits üblich sind. Mittelfristig werden Heimsysteme in gleichem Preisbereich liegen.

Batterien können sich rechnen

Unter der Annahme, dass eine Solaranlage für 13 ct/kWh Strom erzeugt und der Speicher die kWh für 13,2 ct/kWh, wie oben gezeigt, speichert, ist eine private Speicherung von Solarstrom ökonomisch sinnvoll. Da die meisten mehr als 27ct/kWh für den Strom zahlen. Allerdings muss man einen Händler finden, der das gesamte Speichersystem so günstig liefert.

Weitere Beiträge im Blog:


Quelle:
[1] Sauer, Dirk, et.al., Speicher in netzgekoppelten PV-Anlagen, RWTH Aachen, VDI-Fachkonferenz Energiespeicher für die Energiewende, Mainz 2013 


Mittwoch, 8. Mai 2013

Innovationen verhindern, mit Schutzzöllen!

EU will fast 50% Schutzzölle auf Photovoltaik erheben

Eigentlich kann man es fast nicht glauben, dass in einer Welt, in der die Zölle nach und nach abgeschafft werden, die Europäische Union neue Zölle einführt. Auf Dauer behindern Zölle den feien Handel, das wurde von der EWG (Europäische Wirtschaftsgemeinschaft) früh erkannt und man hat die Zölle innerhalb der EU weitgehend abgeschafft, sehr zum Vorteil der Industrie. 

Warum schaden Zölle?

Das Prinzip einer arbeitsteiligen Wirtschaft beruht auf der Spezialisierung aller Teilnehmer. In der ersten Phase der Neuzeit begannen einige Stahl zu bearbeiten, andere Leder und im Tausch hatten beide ihren Vorteil.
Inzwischen haben wir eine Weltwirtschaft, in der tausende, hochspezialisierter Unternehmen ihre Produkte auf der ganzen Welt anbieten, allein in Deutschland gibt es 2000 Weltmarktführer, von der Luxuslimousine bis zum Heizofen, von der Turbine bis zur Nähnadel. Weltmarktführer haben immer ein gewisses Monopol, da sie die Patente und die Fähigkeit haben, die besten Produkte günstig anzubieten. 
Warum macht sich ein kleines mittelständisches Unternehmen die Mühe hoch innovativ zu sein? Damit es in allen Ländern Kunden bekommt und über den großen Absatz die Entwicklungskosten wieder hereinholt. Mit den Einnahmen wird weitere perfektioniert und so dreht sich die Innovationsspirale!
Zölle zielen auf die Abschottung von Märkten ab, Unternehmen die nicht wettbewerbsfähig sind werden scheinbar geschützt, da die besseren Mitbewerber nicht zu fairen Preisen auf dem Markt liefern dürfen.
Die schwachen Unternehmen brauchen sich jetzt nicht mehr zu bemühen, der Staat kümmert sich um den Absatz, allerdings nur kurz. Da die Produkte auf dem Weltmarkt nicht bestehen, bröckeln auch die Einnahmen und letztendlich verschwinden die Unternehmen.

Die Solarbranche

In der Solarbranche ist eine weltweite Branche, nur 20% der PV Module werden in Deutschland verkauft, die großen Märkte entstehen in Asien. 
In einer chinesischen Hersteller haben nach eigenen Angaben nur 10% Personalkosten, über 50% sind Anlagekosten und wo kommen die Produktionsmaschinen her? 50% aus Deutschland! 
Das gilt für viele Produkte, auch ein iPhone kommt aus China, wurde in Kalifornien entwickelt und die Produktionsmaschinen sind in Deutschland entwickelt worden, das weis ich zufällig sehr genau, da ein Verwandter die Entwicklung leitet.
Würden jetzt die Chinesen als Gegenmaßnahme Zölle auf Produktionsmaschinen erheben, werden die iPhones aber auch die Solarzellen teurer.
Laut BDI sichern die deutschen Exporte nach China eine Million Arbeitsplätze in Deutschland.

Vorteil billiger PV Module

Man kann lange darüber streiten, ob des EEG* Gesetz den CO2-Ausstoß in Deutschland merklich reduziert, aber die Sekundäreffekte sind enorm: Das EEG hat die Produktionszahlen für PV enorm erhöht, damit sind die PV-Module unerwartet günstig geworden, damit lohnt sich PV an vielen Orten der Erde und damit ist eine Rückkopplung eingeleitet, die das CO2 Problem wirklich löst.

Stoppt die Zölle

Auf Dauer ist niemanden geholfen, wenn mit Zölle die Innovationen gebremst werden. Aber besonders skurril ist, wenn mit Importzöllen die PV-Preise steigen und damit die EEG-Abgabe nicht so schnell sinkt, wie es ohne Zölle möglich wäre. Absurde Politik. 
Und wenn es stimmt, dass die chinesische Regierung die PV-Branche unterstützt, so kann ich nur sagen, in Deutschland wird die PV-Branche mit 60 Milliarden € über das EEG unterstützt, wenn das mal keine Subvention ist! 
*EEG: Erneuerbare Energien Gesetz

Sonntag, 22. Juli 2012

Untere Preisschwelle für Solarstrom

Ein Wort vorneweg, die hier kalkulierten Preise für Solarenergie könnten erreicht werden, es sind keine aktuellen Preise die wir in Kürze sehen werden, sondern Grenzwertbetrachtungen.
Betrachtet man die Kostenstruktur für Solarenergie, dann gibt es die Modulpreise, die Gestelle, die Montagekosten und die Transportkosten.

Die Modulpreise sind heute immer noch durch die Siliziumzellen dominiert. Allerdings kann die Firma Firstsolar bereits Silizium-Dünnschichtmodule mit über 14% Wirkungsgrad herstellen. Damit wird auf Dauer der Glaspreis die Module dominieren, da nur minimale Mengen an Silizium aufgedampft werden und die Prozesse extrem optimiert werden können. Der weltweite Markt für Flachglas liegt bei 50 Millionen Tonnen, der Umsatz bei 21 Mrd$. Mithin kostet eine Tonne Flachglas 420$. Damit können 100m² Solarglas gefertigt werden, das etwa 3,2mm dick ist. Ein Quadratmeter Solarmodul, ohne Montage, ab Werk, könnte somit 4,2$/m² kosten

Geringer Wirkungsgrad

Konservativ wird der Wirkungsgrad von SI -Dünnschicht nicht wesentlich über 15% gehen, insbesondere wenn man die Degeneration berücksichtigt. Damit benötigt man 7m² Glasfläche um 1kW_peak zu installieren. Der Preis für das Modul pro kW_peak liegt dann bei 28$/kW_peak, zum Vergleich, dieser Wert liegt heute noch bei 500$/kW_peak, aber es soll die Grenze gefunden werden.
Die Installation erfordert Gestelle aus Stahl und Aluminium, eine grobe Schätzung ist, dass etwa soviel Metall notwendig ist, als für die Solarzellen, also nochmals 28$/kW_peak.
Diese Materialien müssen angeliefert werden, Heute kostet eine Containerfracht 0,05$/kg um die halbe Welt, etwa China-Europa. Danach muss noch vom Hafen zur Baustelle ein LKW fahren, dabei erhöhen sich die Frachtkosten um weitere 19$/kW_peak.
Die Montage besteht im wesentlichen aus dem Einrammen er Pfähle und dem Festschrauben der Module, das sind Vorgänge, die mit geeigneten Maschinen erheblich automatisiert werden können, ich setze sie mit 26$/kW_peak an.

Kostenstruktur für ein kW_peak installierte Leistung:


  • Modulpreis:   28$
  • Gestelle     :   28$
  • Montage   :   25,6$
  • Transport  :   25,6$
  • Summe     : 107,2$

Finanzierung

Das gesamte System muss finanziert werden und dabei soll innerhalb von 10 Jahren das Invest vollständig zurücklaufen, danach entstehen im Unternehmen Reingewinne. Bei guten Standorten, etwa Südspanien oder im Südwesten der USA können 2000kWh/a mit einer Solaranlage mit 1kW Spitzenleistung erzeugt werden. Innerhalb von 10 Jahren somit 20.000kWh.
Da unsere Anlage 107$/kWh_peak kostet, kann der Strom für 0,006$/kWh oder 0,6ct/kWh produziert werden. Das liegt weit unterhalb aller bekannten Stromerzeugungskosten, die bei 5ct/kWh in Kohlekraftwerken liegen!

Nicht berücksichtigte Kosten

Diese Betrachtung hat einige Kosten bewusst ausgespart, da sie nicht direkt in die Stromproduktion einfließen. Der Abtransport des Stroms kann über Leitungen erfolgen, aber möglicherweise steht der Verbraucher, etwa Rechenzentren, Aluminiumhütten, Mineralölkonverter, direkt neben der Anlage, was heute oft bei Flusskraftwerken der Fall ist. Die Wartung wurde nicht berücksichtigt, kann aber sehr klein gehalten werden, heute geht man von 1% der Systemkosten pro Jahr aus, das würde in unserem Fall den Preis um 10% auf 0,0066$/kWh unwesentlich erhöhen.
Die genutzten Flächen sollten vorzugsweise Wüsten sein, bisher sind solche Landflächen extrem billig, da praktisch wertlos. Das könnte sich natürlich in ferner Zukunft, wenn alle Wüsten voll mit Solaranlagen stehen, ändern. 
Sinnvoll wäre natürlich noch ein Speichersystem für diesen extrem günstigen Strom, aber das ist eine andere Geschichte, die ich mit meinem Lageenergiespeicher gerne lösen würde.
Weitere Kosten, wie Wechselrichter, Blitzschutz, Versicherung, Steuern, Bewachung, Rückbau, "Ökoabgabe?" habe ich nicht näher betrachtet. 
Auf jeden Fall sollte damit klar werden, dass ein weiteres Absinken des Preises für Solarstrom möglich, und aufgrund des großen Marktes sogar als sehr wahrscheinlich anzusehen ist!